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INTRODUCTION 

During the last two decades there has been an extensive investigation 

of the properties of the electrical double layer occurring at charged 

interfaces. The origin of the double layer depends on whether the inter­

face is polarizable or nonpolarizable. 

Consider a metal-solution interface. Let a reference electrode be 

inserted in solution and let an electromotive force (e.ra.f.) be applied 

between the metal and reference electrodes by use of a potentiometer. The 

potential range should be wide but limited to the extent that a negligible 

charge is transferred across the interface. Such an interface is said to 

be polarizable. Upon application of this e.m.f. a surplus (or deficit) 

of electrons occurs on the metal surface via delivery (or removal) of 

electrons by the potentiometer while a deficit (or surplus) of electrons 

occurs in the solution via oxidation (or reduction) of a particular ion. 

Then in simplified form the double layer at a polarizable interface 

consists of a layer of electronic charge on the metal surface, a charge 

distribution of ions containing a net charge equal (but opposite in sign) 

to that on the metal in the solution region adjacent to the metal, and a 

layer of solvent molecules between the metal and the ionic charge 

distribution. The mercury-solution interface best represents such a 

system. 

Consider a reversible electrode-solution interface. This is illus­

trated by the silver iodide-solution interface. Some Ag"^ and I" ions will 

adsorb on the Agi surface resulting in the establishment of a net charge 

on the surface and an equal but opposite charge in solution. Such an 
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interface is said to be nonpolarizable since a charge has been trans­

ferred across the interface. Note here that the charge and potential 

depend on the concentration of Ag' (or I~) in the solution bulk. Then in 

simplified form the double layer at a nonpolarizable interface such'as 

the Agl-solution interface consists of a net ionic charge on the Agi 

surface, a charge distribution of ions containing a net charge equal (but 

opposite in sign) to that on the surface in the solution region adjacent 

to the Agi and a layer of solvent molecules between the Agi surface and 

the ionic charge distribution. 

In general the above mentioned layer of solvent molecules is called 

the compact or Stern layer while the ionic charge distribution in the 

solution is called the diffuse or Gouy layer. The plane through the 

distance from the surface of closest approach of the electrical center of 

the ions in the diffuse layer is the boundary between the Stern and 

diffuse layers and is called the outer Kalmholtz plane. This double layer 

model is called the Stern-Grahame model. When adsorption of ions occurs 

in the Stern layer the above simple model has to be modified. An ion 

without a solvent sheath on the side of the ion adjacent to the solid 

surface is said to be specifically adsorbed in the Stern layer. Signifi­

cant specific adsorption is frequently encountered with anions but 

infrequently with cations; this reflects the greater ease of partial 

dehydration of the anions. 

Let ll) ̂  denote the relative potential at the surface (x = 0) and </) ̂  

the relative potential at the outer Helmholtz- plane (x = ô). The relative 

potential in the solution bulk is zero. Let denote the charge density 
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on the solid surface. Suppose there is no specific adsorption. Then it 

can be seen that the Stern and diffuse layers behave as differential 

capacitors in series in which 

1/% = 1/Cc+ 1/Cg (1) 

where is the Stern capacity, Cg is the diffuse capacity, and x the 

double layer capacity. We have 

X = dff^/d (1') 

Cc = do-o/d( ^ig) (2) 

Cg = dOg/d (3) 

In these formulae capacitances per unit area are considered in order 

to utilize parameters independent of surface area. 

Expressions for the dependence of the charge density and differential 

capacity of the diffuse layer on the surface potential v/ere derived by 

Gouy and Chapman (1909-13) by use of a Boltzman distribution of ions. 

Incorrectly they assumed the diffuse layer began at the surface ( x: = 0)i 

2 The charge density CTg in coulombs/cm of the diffuse layer containing 

ions of the same valence is 

9 X IQll 

1/2 r ZnpkTf 

TT 

1/2 ze 0; 
sinh 

2kT 

where n^ is the number of ions per cm in the solution bulk, £ is the 

solvent dielectric constant, k is the Boltzmann constant in joules/deg 
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molecule, z is the ion valence, e is the electronic charge in coulombs 

and 0^ is in volts. By differentiation of with respect to !p ^  the 

differential capacity C„ in farads/cm^ of the diffuse layer is obtained. 

L»o* — 

1 / 2  

9 X 10 11 ZirkT 

1/2 

cosh 
ze 

2kT 
(3') 

It is seen that Cg is independent of the properties of the surface at the 

interface and is a minimum at the zero point of charge (zpc)> that is at 

0"„ = 0. 

Cc- (min) 
L 9 X lO^^J 

1/2 r 2 2 ^ z e o 
ZrkT 

1/2 

(3'') 

In general the capacity Cp of a parallel plate condenser in farads/cm is 

expressed by 

C„ = gP 

p 9 X 10' 

where is the distance between the plates in cm. Hence from Equation 

3"' the characteristic thickness of the diffuse layer called the Debye 

_l/2 

length Xr) in cm is defined as 

l/%n = (9x10^1) 
1/2 Q 2 2 

Sttz e n, 

€kT 

It is also seen that Cg is very small for very dilute solutions near the 

zero point of charge,-and for sufficiently dilute solutions will be small 

compared to the Stern capacity. In this case Equation 1 shows that the 

double layer capacity will approximately equal the diffuse capacity. 
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In 1924 Stern (1) incorporated the charge free solvent layer in the 

double layer model in order to account for ionic dimensions. There is no 

simple dependence of the differential capacity of the Stern layer on 

potential. Grahams (2) employed his experimental values of the double 

layer capacity or the Hg-aqueous NaF solution interface and the Gouy-

i 
Chapman theory of the d^iffuse layer, to calculate the Stern capacity at a 

given surface charge density from Equation 1. He found that tha Stern 

capacity varied strongly with the surface charge and suggested that such 

a dependence resulted from the compression and dielectric saturation of 

the solvent molecules in the Stern layer by the high electric field 

emanating from the surface. The former causes a rise while the latter 

causes a drop in the Stern capacity. At any rate for concentrated solu­

tions or at very high negative or positive potentials the diffuse capacity 

is large and in this case the double layer capacity will approximately 

equal the Stern capacity. 

Briefly, the double layer model is modified as follows upon specific 

adsorption. Let (Tj_ denote the charge density in the Stern layer due to 

specific adsorption. 

Since éo = ^ 

then 

Hence 

Ifo = d(  ^ô)  .  d  ^  
do-Q do-Q ' do-g do-Q 

% Cc C dOo 

we have CTq = ^ °"g) 

Then differentiation with respect to., 0"^ yields 
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-253 = 1 + 1̂ 1--
dOo 

Hence 

T 'k * k 

It is observed that the double Layer capacity X values for the Hg-

solution interface rise in the potential region where specific adsorption 

occurs. From Equation 1'' this rise is caused by an increase in the 

Stern capacity upon specific adsorption compared to that without such 

adsorption and by the change of adsorption with surface charge u^. 

Since the double layer behaves as a differential capacity much infor­

mation about the structure and properties of the double layer can be 

obtained by measuring X as a function of potential. Other approaches to 

the study of the double layer structure are illustrated, for example, by 

measurements of the surface tension y at a Kg-solution interface as a func­

tion of potential and the measurement of the surface charge density cr at 

the Agl-solution interface as a function of potential. The surface 

tension Y is related to the surface charge density cr in the absence of 

specific adsorption by the Lippmann equation 

-dy = cdV 

where V is the applied e.m.f. Differentiation of the y-V curve gives the 

cr-V curve which upon differentiation yields the % -V curve. The above 

two methods were first used to elucidate double layer properties. 

In 1935 Frumkin and Proskurnin (3) were the first to publish reliable 



www.manaraa.com

work on the direct measurement of the double layer differential capacity. 

They used an oscillographic technique with a low amplitude signal to study 

the Hg-solution interface. A low amplitude signal is required because 

X itself is a function of potential. Thereafter Grahame (4) ir-iproved 

the alternating current (a.c.) bridge technique and published extensive 

double layer capacity results for the Hg-solution interface. However, 

such methods rr.ay not be workable for reversible interfaces. When an a.c. 

signal is imposed across the reversible interface a concentration 

gradient of the potential determining ions is set up resulting in the dif­

fusion of these ions back and forth from the solution to the solid surface 

which disrupts the double layer. The resistance of a reversible electrode 

is usually sufficiently high that the balance point in the a.c. bridge 

technique cannot be obtained with accuracy. Reversible electrodes are 

usually somewhat rough and this results in frequency-dependent data. 

Such results would have to be interpreted quantitatively. As a conse­

quence no work on reversible electrodes via the a.c. bridge technique has 

been successful. The first problem may be overcome by using signals of 

sufficiently high frequency that the polarity of the signal changes 

sufficiently rapidly that the ions always reverse direction before reach­

ing the interface. The second problem may be overcome by using a 

reversible electrode with a relatively high conductivity. At the same 

time it should have a relatively wide accessible potential range and be 

such that studies of its double layer properties occur in the literature. 

The third problem may be overcome by using a very rough, relatively 

smooth or porous electrode. In these cases the frequency dispersion can 
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be quantitatively explained in terms of known quantities. With this in 

mind we applied the a.c. bridge technique to the Agl-aqueous solution 

interface to determine its differential double layer capacity as a 

function of potential and ionic strength. Agi has a relatively high 

conductivity for solids, has an accessible potential range of about 450 

millivolts and double layer studies on the Agl-solution interface have 

been very extensive with work done by Van Laar (5), Mackor (6,7), 

Lyklema (8,9), Agar (10), and others. 

The stability of all lyophobic colloids depends on the electrical 

repulsion between particles resulting from their surface charges partly 

screened by the diffuse double layer. Once the character of the double 

layer is thoroughly understood it is possible to calculate the rate of 

flocculation as a function of surface charge and electrolyte concentration. 

High precision measurements of double layer properties have so far only 

been available for the mercury-electrolytic solution interface, the high 

precision results from the use of alternating current bridge measurements 

in this system. In general lyophobic colloids depend for stability on ion 

adsorption, and in this respect the polarized mercury surface poorly 

represents them. Silver iodide forms excellent colloidal dispersions, 

and they have been widely studied. As pointed out, the silver iodide-

solution interface is also a classical example of the reversible 

interface. It is for this reason that the development of methods for 

measuring electrical properties of this interface with high precision is 

of such fundamental importance. 



www.manaraa.com

9 

MATERIALS 

Water 

All solutions were prepared from freshly distilled conductivity 

water. The conductivity water was prepared by use of a fused silica 

continuous double distillation column obtained from Engelhard Industries, 

Inc. Further details are described by Kelsh (11). 

Chemicals 

KNOg used as the electrolyte was recrystallized twice from water. 

AgNOg used as a titrant was reagent grade. KI used as a titrant and in 

preparing the Agl electrodes was recrystallized from water. Agi used to 

buffer the cell solution was prepared from KI and AgNOg solutions. 

Inert Atmosphere 

Tank nitrogen was used to flush the cell. It entered the cell 

through a glass filter stick which dispersed the gas in a stream of small 

bubbles and left the cell through a water bubbler. 

Silver Iodide Electrodes 

The Agi electrodes were prepared as follows. Silver wire #26 obtained 

from Sargent Co. was inserted through a hole in a 9 ram cork stopper which 

in turn had been inserted at one end of a 9 mm glass tubing. The silver 

wire protruded from both ends of the tube. A glue mixture of Araldite 502 

Epoxy Resin (10 parts by weight) and Hardener 951 (1 part by weight) was 
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then used to seal carefully the end of the tube containing the cork 

without contaminating the exposed Ag. A schematic diagram of the 

electrode is shown in Figure 1. 

The glue components were obtained from CÏBA Products Company, Fair 

Lawn, New Jersey, The mixture gels in about 50 minutes at 25°C and is 

then cured for 3 days. 

The exposed length and radius of the silver wire were measured with 

a measuring microscope. The silver electrode was then partly immersed in 

a .1 N KÏ solution along with a Pt electrode. The Ag electrode was con­

nected to the positive terminal of a battery while the Pt electrode was 

connected to the negative terminal. An Agi deposit was then formed on 

the Ag electrode by electrolysis, and its thickness was estimated from the 

Faraday Law of electrolysis. Thus 

m = 
F 

where m is the mass deposited on the electrode, is the equivalent 

weight of the substance formed, I is the current through the electrode 

and t is the time of electrolysis. Since the electrode is cylindrical the 

volume Vg of Agi is expressed by 

Vg = -rrdhr^ 

where d is the diameter of the cylinder, h is the length, and is the 

thickness of the Agi. 

Then the mass m of Agi is 
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Figure 1. Agi electrode schematic 
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m = irdhTgPg 

where Pg is the density of Agi. 

Hence thickness is expressed by 

e TTFdhPg 

3 Using = 234.8 grams/equivalent, Pg =5.57 grams/cm , F = 

9.650 X 10^ coulombs/equivalent we get 

• _ 1.37 X 10-4 It 
e ~ dh 

The area Ae of the Agi electrode can be expressed by 

d2 
Ae = TT (dh -f —) 

Table 1 lists the geometrical characteristics of the various electrodes 

investigated. 

The experimental cell consists of an Agi and a IN calomel electrode 

in contact with an aqueous KNO^ solution containing very dilute concentr 

tions of Ag~ and I" ions. The cell can be written as 

KNOgCCg,) 

Hg I Hg2Cl2(s) I KCl (IN). .AgNOT^CAgt) | AgKs) | Ag 

KI(Ci-) 

where is the concentration of the electrolyte KNO3., is the 

concentration of Ag"^ and G^_ is the concentration of I". The liquid 

junction potential remains nearly constant because the ICCl concentration 

in the salt bridge is large compared to other concentrations at the 
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Table 1. The diameter d in cm. length h in cm, thickness of Aglr^ in 
cm and area Ae in cm^ for the various Agi electrodes 

Electrode d x 10" h x 10^ TQ ̂  lO'^'' Ae x 10^ 

# 9 4.15 2.64 3.4 3.58 

#10 4.16 2.63 4.7 ^57 

#11 4.08 1.96 0.44 2.64 

junction. Chloride ion contamination of the solution was minimized by 

making the contact between the salt bridge and the solution through a 

hole of such small radius that a negligible quantity/hr of CI" entered 

the solution and by placing this electrode in solution only during the 

small time, periods when potentials were actually being measured. New 

solutions were used for each set of measurements. The half cell reaction 

in excess of Ag"^ is: 

Hg 4- C1"(1N) —> 1/2 EgzClgCs) e", E^ai = -281 mv 

A-z' -I- e~ —> Ag 5 E° = 799 mv 

Ag" + Hg + Cl-(IN) --> 1/2 Hg2Cl2(s) + Ag 

The cell potential in excess Ag^ is expressed by 

c = %cal + EAg+,Ag + aAg+ 

where a 4- is the activity of Ag"^ ion. 
Ag^ 
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Then = 518 + |^ In In 0^^+ 

where 7 ^ is the activity coefficient of Ag"*" ion. 
Ag 

We define 
SAg = 518 + 21 la 

_o' 
Then + p- 1» <=48+ 

The cell reaction in excess I is: 

Hg + C1"(1N) —> 1/2 HggClgCs) + e- , E^ai = -281 mv 

Agl(s) + e —> Ag + I~ , E° = -152 mv 

Agl(s) + Hg + C1~(1N) —> Ag + I- + 1/2 HggClzCs) 

The cell potential E^ in excess I" is expressed by 

^cal ^Agl.Ag • \-

where a^_ is the activity of I ion. 

Then E^ = - 433 - In ^ In C^. 

where 7%- is the activity coefficient of I~ ion. 

We define 

E°' = - 433 - In 

O * RT 
Then E^ = ^ In Cj-
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Note that and y__ depend only on the ionic strength of the 

electrolyte. 

We find an expression for pK for Aql as follows: 
sp ^ 

From Eouations 4 and 5 

,o' „o' L< 
-r  1" (C;. 

Since i<3p = Cj_ 

then 

.U 

« 
nE?, - E? ) 

P^sp '^sp 2.303 ST 

The relative potential j/) is defined as 

0 = - Ec(zpc) (7) 

where E^(zpc) denotes the cell potential at the zero point of charge, 

that is the cell potential at which equal amounts of Ag~ and I" have 

adsorbed on the Agi surface to give a zero net charge. In plotting double 

layer capacity curves the potential ih is used as the abscissa. Actually 

the surface potential ib ̂  should be used as the abscissa but is not 

accessible experimentally, i/j ̂  is a component of ij) , and under certain 

conditions they are equal. This point will be discussed later. Let 

denote the concentration of Ag" at the zero point of charge. Then 

from Equation 4 
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Hence i!) is positive when an excess Ag"^ has adsorbed on the Agi surface 

and negative for an excess of I . Van Laar (5) has done the most exten­

sive and reliable study of the zero point of charge on Agi, and we shall 

take his value, expressed as pAg = 5.45 at the zero point of charge in 

dilute KNO3 solution. We will assume there is no shift in the zero point 

of charge with increasing ionic strength for those we use. 

Then 
' C° u = 3.55 X 10 moles/liter 

Aa' 

o ̂ o ̂ 
The standard potentials E. and E_ were determined at a given ionic 

Ag 1 

strength by measuring the potential of the above cell at various known 

concentrations of Ag' and I~ by use of a Beckman pK meter. Equation 4 is 

used to calculate and Equation 5 is used to calculate E- .  Once these 

values are known we can calculate unknown concentrations of Ag' and I" at . 

a given cell potential. The rational potential é at a given cell 

potential can also be determined. The values of E? . and pK for 
^ Ag' i ^ sp 

representative electrodes are listed in Table 2. . They are in accord with 

the values determined by other workers. 

O ! o ' 
Table 2. The standard cell potentials Ei^g and Et in millivolts and pK-^ 

for various Agi electrodes 

ionic 
strength 

Electrode E, 

,102c y 

#10 
515 
513 - 416 

15.67 
15.70 

.01020 # 9 
#10 

526 
523 

410 
415 

15.82 
15.86 

.001020 -f y 
#10 

529 
525 

411 
415 

15.S9 
15.89 
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APPARATUS 

The Iir.pedai-:ce Bridge Cell 

The container for the solution was formed from a 55/60 Pyrex double 

walled standard taper, outer. The ring seal at the bottom completed a 

thermostatting jacket through which water from a constant temperature bath 

could be circulated, A glass tube, 2 cm in diameter but tapered at the 

bottom was attached to an outlet at one side of the container. This tuba 

was used to contain the reference electrode. 

A 55/60 Pyrex standard taper, inner, was attached to the top of the 

above container. This served as a support for the various components of 

the cell. A platinum gauze electrode was connected to the support by a 

platinum wire sealed through a glass sheath, which in turn was ring-sealed 

to the support. The a. c. signal was applied between this electrode and 

the Agi electrode. A gas dispersing tube was also connected to the 

support by a ring seal. A Teflon plug stopcock directed the incoming gas 

through this tube when closed. 

A 12/30 Pyrex standard taper, outer, was attached to the top of the 

cell support. The Agi electrode was inserted through a Teflon plug, the 

outside of which had been machined to fit tightly the 12/30 Pyrex standard 

taper, outer. 

A schematic diagram of the cell is shown in Figure 2. 
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CALO[î EL 

ELECTRODE 
TIP 

NITROGEN IN 

TEFLON STOPCOCK 

TO ATMOSPHERE 

55/60 STANDARD TAPH 

SILVER IODIDE ELECT 

- PLATINUfvl GAUZE ELE 

BUBBLER 

INLET FROril 
THERri^iOSTAT 

:r 

ROD[ 

-CTr 

TEFLON MAGNETIC 

STIRRING ARM 

Figure 2. Impcdavice bridge cell schema Lie 

t'* 
CO 



www.manaraa.com

19 

Electronic Apparatus 

The impedancc bridge was constructed around a Leeds and Northrup Co. 

shielded ratio box, catalog number 1553. The ratio box contains ratio 

arms for a one to one impedance bridge, i.e., 2 adjacent arms of the 

bridge are resistors of equal magnitude. It also has a shielded step-

down input transformer and a network for use in balancing the bridge. 

These are-all enclosed in a metal case which acts as a shield. Various 

external,pieces of equipment were connected to shielded binding posts on 

the box. 

The input signal to the transformer in the ratio box was supplied by 

a Hewlett Packard Model 200 CD wide range oscillator. 

The measuring arm of the bridge consisted of a Freed Transformer Co. 

Model 1350 decade capacitor and a non-inductively wound Leeds and Northrup 

Co. decade resistance, catalog number 4764, in series connection. The 

decade capacitor consisted of 4 decades in units of .001 j-if, .01 lif and 

1 jj-f, and a continuously variable air capacitor with a scale calibrated 

in units of 10 j-ijaf with a range up to a rfiaximum of .001 \J.f. The decade 

resistance consisted of 6 decades in units of .01, .1, 1, 10, 100, and 

1000 ohms. 

,The output signal from the bridge needed amplification before it 

could be displayed on an oscilloscope and this was first furnished by a 

Hewlett Packard Model 450A wide band amplifier operating at a gain of 

100 to 1. This signal was in turn amplified by a twin-tee narrow band 

amplifier designed and constructed in this laboratory. 

Pairs of tees used in the measurements were constructed for use at 
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nominal frequencies 250, 500, 750, 1000, 2500, 5000, and 10,000 cycles 

per second. The amplified signal from the twin tee was put into the Y 

input of the oscilloscope and produced the Y displacement on the screen. 

A Bumont Type 304-H cathode ray oscilloscope was used. 

In order to gain additional sensitivity in the measurements a phase 

sensitive technique was used. A second Hewlett Packard Model 45QA wide 

band amplifier operating at a gain, of 100 to 1 had its input connected to 

the bridge and its output to the X input of the oscilloscope so the input 

signal to the bridge could be amplified and used to produce the X 

displacement on the oscilloscope screen. These X and Y inputs produced a 

Lissajous figure on the screen. A horizontal straight line indicated the 

output signal from the bridge was zero and the bridge balanced. 

A second pair of series elements similar to the above decade 

capacitor and decade resistance were then substituted for the cell in the 

bridge. The bridge was then balanced again by adjusting this second pair 

of elements. Such a calibration procedure is needed in order zo eliminate 

effects due to asymmetries in the bridge network and in the electrical 

leads. By using identical shielded electrical leads for connecting both 

the cell and cell analog to the bridge terminal the impedance of the cell 

and the cell analog became the same. 

A diagram of the bridge is shown in Figure 3. 
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OSCILLATOR 

Figure 3. Impedance bridge schematic 
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THEORY 

Consider an Agl-aqueous solution interface with an a. c. signal 

applied across it. The Agi sur-face is somewhat porous so it will consist 

of porous and flat, smooth parts as illustrated in Figure 4. Each pore 

filled with solution has an impedance Z* which we assume is equivalent to 

a series combination of a capacitance and resistance . The 

impedance Zp of all pores is the resultant of the pore impedances con­

nected in parallel. Hence it can be represented as a series combination/' 

of a capacitance Cp and resistance Rp. The impedance at the flat part of 

the interface consists of the double layer capacitance in parallel with 

its associated Faradaic impedance Z?. The latter consists of a series 

combination of capacitance and resistance Rp. The impedance Zg at the 

entire interface is the resultant of the porous impedance Zp connected in 

parallel with the flat impedance. The circuit for the Agi interface as 

described above is illustrated in Figure 5. Hence impedance Zg is given 

by • 

1- = 1- -r 1 COCd -f i- (S) 
Zs Zp Zp 

where 

Zp = -6c; (8') 

Zp = %F - 1^5; (8'') 

In the following paragraphs expressions for Cp, Rp, Cp, and Rp will be 

derived. 
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The Farzdaic Impedance 

The Faradaic impedance at the Agi interface is explained as fellows. 

The potential difference between the Agi and platinum electrodes in 

contact via solution containing an excess of Ag" ions of concentration 

3 in moles/em is 

Ec = In Co 

The A.C. signal V across these electrodes changes the potential difference 

Ec' = Zc + V 

J-
This means the concentration of Ag" ions near the Agi surface must change 

accordingly. Hence a concentration gradient of k£'' ions is set up. As a 

result the Ag ions diffuse to and from the Agi surface according to the 

polarity of the signal. Let C(x,t) denote the concentration of Ag' ions 

at the distance % from the Agi surface at time t. Then 

Ec' = 4- ̂  ln-C(o,t) 

Using the above equations signal V is expressed as 

V = In (9) 

Signal V can also be expressed as 

V -  a sin ojt (10) 



www.manaraa.com

zd 

where a is the amplicude of the signal. Amplitude a is experimentally 

made small compared to a given cell potential. Under this condition 

cp - c(o.c) . ̂ 1 

co 

Since In - In j 1 -
{_ Cq 

then to a good approximation — 

, 0(0,n) c(o,c) -

"07" ° 5;— 

then 

v = y (9') 
""o 

The diffusion of Ag~ ions produces a current Ip called the Faradaic 

current. Let Z-^ - V/Ij.; then Zp is dimensionally an impedance, and it is 

called the Faradaic impedance. Ive let the "Faradaic impedance be equivalent 

to a series combination of a capacitance and resistance called the 

Faradaic capacitance and Faradaic resistance respectively. 

we proceed to find an expression for the Faradaic current density If 

and subsequently expressions for the Faradaic capacitance C-^ and 

resistance Rp resulting from planar diffusion. The Faradaic current 

9 
density If resulting from planar diffusion in coulombs/sec cm" is given by 

if = fdcx(o,c) , t > 0 (11) 

wnere 
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cv(o,c) 
bc(x,t) 
dx X = 0 

and D is thù diffusion constaau of Ag"' ions ia cm*"/sec. 

second law of diffusion we have 

Usin" Fick'; 

= Cj.(x,t) , x > 0, t > (12) 

with the conditions 

;(x,o) — c (15) 

lim C(x,t) = G 

x —> 

From Equations 9 and 10 we find 

(14) 

C(o,C) - C_ = sin wt (15) 

It will be convenient to transform these ecuations as follows 

.et U(x,t) = C(x,t) - C, 

:hen Equations 11-15 become 

= f d u*(o,c) , t> 0 

D U%x(x,t) = Uj-(x,t) , X > o, t > 0 

U(x,o) = 0 

( 1 1 ' )  

(12 ' )  

(13') 
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lim U(x,t) 

>; —> œ 

(14') 

U(o,t) 
ifc, 

sin ÙJ (Ij • ) 

Equations 11', 12', 14', and 15' upon. Laplace Transformation yield 

if = f d ux(o,s) (11'') 

D u^(x,s) = s û(x,s) - U(x,o) (12'') 

lira u(XjS) =0 (14'') 

X > CO . 

- apco CÛ • 
u(o,s) = 02 g2 + (15'') 

Inserting Equation 13' in Equation 12'' yields 

D %%%(%,s) - s ïï(x,s) = 0 

The solution to the above equation satisfying Equation 14'' is 

u(x,s) = A' exp (-/sTû x) 

In order to satisfy Equation 15'' we must have 

a ' _ HSs ë 
- rt s2+ 

Hence 

afco _ 
u(%,s) = — 9 exp(^/ -s/D x) 

S~ -r Cà 
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Differentiation of the ̂ bove equation yields 

u^(x,s) = 
ar a.i xp(. (-/"ftd %) 

00 -

then u^(c,s) ^ ^—? /s/D (16) 
-r Où-

Inserting Equation 16 into Equation 11'' yields 

?"a C_D-/2 

+ co") 

We now take the inverse transform of the above equation. 

j_,et 
-  - Î / 2  ;(s) 

9 , 2 
s CO' 

then 
F(t) G(t) = cos Lût 

F(T) = • •" , G(t-r ) = cos CÛ (t-r ) 
y tfr 

Hence 2 t/2 
f ac^b" w p ^ 

If = RT—:  J o F(T ) G(t-r ) dr 

- CC r ^ cos g; (t- r > 

"i s.t *̂ 0 /ttt 

Since 

cos CO (t - T ) = cos tot cos LOT 4- sin cot sin lût 
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If = , I cos 60t 
RTTT 1 /2  

cos COT 

. /t 
dT + sin cot 

f> t 

Let y = ( COT ) 
1/2 

then d T -
2T 

1 /2  

CO 
1 /2  

dy 

At T = 0, y = 0 and at = t, y = / cot 

Using the above substitutions we find 

«/cot 
:f = 

2f^acod^''^ co^^^ 

RTtt 1/2 cos CO t cos y dy + sin 
r ^ w t  

o 
sin y dy 

We consider the steady state condition where co t —> as the upper limit 

in the above integrals. 

Since 

. .0° r. , 2 
1 sin y dy 

Then 
f^acr 

:f = RT 

= l/lr72 
2 

1/2 
• DCO" 

2 cos cot + sin cot (17) 

We find another expression for the Faradaic current density as 

2 
follows. The Faradaic capacity Gf in farads/cm and Faradaic resistivity 

2 Rf in ohm cm are a series combination through which current density 

flows. The potential drop across this combination is V. Then 

dQf 
dV = Rfdif + — (18) 
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wr •herû 

dQf = Ifdt 

We have used a differential equation above because we are considering Cf 

;ial capacity. Equation 18 becomes upon use of Equation 10 

a CO cos (lot = R. 
C-c 

(18 ' )  

Let Q> = W sin Lût 4- 3 cos cot 

nen 
ic = OL CO COS CO t - 3 CO sin COt :i9) 

at 
Lz. = - Ci CO" cot - S CO COS CO : 

Inserting Equations 19 and 20 in Equation IS yields 

(20) 

r 
L" 

a CO cos cot = >: - Rf 0! CO - -g-
CL -i 

CO sin cot -1- - Rf 3CO — 1 cccos b)1 

Jpon equating coefficients in the above equation we get 

a = a C - RfGfpCO 

p. = - r^gjrcico 

Hence 

a = 

1 -i- ( coCfRf ) ' 

(21) 

p = 
acoc; 

1 + ((ucf%f) 
(22) 
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nsertincr iiquations 21 ana I'l into 22 lon 19 y yieiGs 

a LÙ C -
if = 

+ (cdcprf)' 
cos 00 • (19. 

jDcn ecuatins coefficients of Equations 17 and 19' we Ret 

cccfrf = 

-,1/2 

1 -r ( cocvrf)' 

i 
2 w-i 

r.ence 

= 

RÏ Lf J 
nl/2 

- / CO 
- / 2  

(23) 

I 1 i 1/2 

l2dau co 
1 / 2  

(24) 

in which we have let 

(25) 

Let A.C denote the flat area of the Agi electrode. Then, the Paradaic 

capacitance G? and resistance Rp can be expressed by 

cv — 

ry, = rf/af (27) 

— A £K£ / CO 
1 / 2  

= k?/cc 
1/2 

L6 '  )  

R-r = 

afkfco 
1/2 

kp w 
72 

(27') 
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in wnich wa aave iCt 

kn = afkf (22) 

The constant for the diffusion of Ag' ions at 25^C is calculated froin 

Equation 25 to be 

kf = 18.4 c% (25') 

where is the concentration of Ag" ions in moles/liter. A diffusion 

constant of 1.20 x 10 ^ ca^/sec was used for Ag" ions. Hence IC^ can be 

calculated once the value of area is determined. 

For the case where the solution contains an excess of I" ions thé 

same equations for Cp and Rp are derived. 

The Pore ïiv.pedance 

Using some assumptions the a.c. behavior of a pore can be represented 

by a uniform RC transmission line. When a small amplitude alternating 

voltage is used, as here, a simple derivation of the impedance of the line 

is possible. This has been worked out by S.. Be Levie (12, 13). For 

clarity the derivation is shown here. It is assumed that the pores are 

circular cylinders of uniform diameter with semi-infinite length, 

homogeneously filled with solution, of uniformly distributed capacitance 

and resistance per unit length, and without cross links. It is also 

assumed that any curvature of the equipotential surfaces within the pores 

may be neglected and that either the electrode resistance or electrolyte 

resistance predominates. 

A diagram of a section of the uniform PX transmission line 



www.manaraa.com

represent] th or pore s riovjn 

denot pote,ntial at di ince lIoi of 

pore ;ime t, i(x,c) denotes the curr 

ïnotes tae r< ince •ooi I L L  1)2: unit Dore Lc 

ou; ;iectrolyte res icance is .giDie comoarec 

resistance .n f- ionic strengths use eiectrcl" 

resi nee has ^eglig: -bis effect in the pore and is rspre; 

ipoer line in .the, transiviission una. Ln^-oecance Z cenocei Lace 

solution interlace per unit pore lengt 

cue to douD^e layer capacitance per unit pore iengtr 

in parallel with the Faradaic impedance per unit pore length. 

boundary conditions are 

e(o. t) = a sin OJ t 

e( ,t) = G 

(2S) 

(30) 

from Figure 5 we iiavc 

de = 

di 2/dx 

tnen 

+ iR = 0 :3i) 

3i -S = 0 

2 
(32) 

tn. 

o c 

ox 

= 0 
d% 

(jj; 

ce 
o% 

- 0 
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A section schematic or the RC transmission line for 
oore 
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?ro:r. Equations 32 and 33 

quatioa satisfying Equation 

:(%) = A' ' exp k/Z x) 

In order to satisfy Equation 29 wc must have 

— c. jLii cut 

;nce 

e(x) = a ot exp (-/" R/Z x) (33) 

)ifferantiation of Equation 3ù yields 

8x 
/"iT/Z a sin cot exp (- ̂  K/2 x) (36) 

Fror.-: Eguatiens 31 and 35 we gel 

i(x) - CO ̂  {p (-v/^R/Z x) (37) 

The imcedance Za of the transmission line is 

za = 
^ i(x) 

Hence dividing Equation 35 by Equation 37 ue obtain 

ẑ  =' &z (j8) 

We nroceed co find an exorassion for impedance i/rorîi rioiure o we 
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.-ave 

cc ' 
(29) 

S : .1 iu cj^^clcancc per unit pore length in r&rads/cc 

^nd K.f is the Faradaic resistance per unit, pore length in ohm cm. We 

need to find expressions for and R.̂ -

The diffusion of species i in a circular cylindrical pore is con­

sidered to be just radial. That is species i diffuses in the region 

0 < r < r^ towards and from the electrode surface at r = r^, where r 

is the distance froa the axis of the cylinder and r is the radius of o 

the pore. The Faradaic current density resulting from this diffusion i: 

given by 

1 T, = FBI '"XJ- "1"/. , t>C 

; e i. where G(r,t) is the concentration of the diffusing ion at dis 

at time t. According to the derivation worked out by R. De Levie (12) 

for the steady state condition the Faradaic current density Ir is 

expressed by 

iVW Û [sin é cos co t cos Ô sin cot j (40) 

where and 0 are functions of /\ defined by 

- , - / 2  

% = r, (41) 

•'7e know the Faradaic current density can also be expressed by 
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a cucg 
If = Z [cos cot + CORfC^ sin CJt] (19') 

1 + rte? 60'^ 

Upon equating coefficients of Equations 40 and 19' we get 

^ ^o , 03 cf 
n /wD sin 0 = £ (42) 

1 + (rfcfco)'^ 

„2 , coc.( cor.cf) 
F Co n / WD cos 0 = ' (43) 
RT 1 + (RfCfCO)"^ 

Dividing Equation 43 by Equation 42 yields 

cos 
sin 0 

From Equation 44 and 42 we get 

corfcf (44) 

f^c u , 
c = -2̂  / d/co (45) 
f RT sin0 

From Equations 44 and 45 we get 

rf. . (46) 
F CqH/ D 60 

Since the pores are cylindrical with radius r^ then the area of a pore 

of unit length is 

ap = arr. 

Then the Faradaic capacitance per unit pore length and resistance per unit 

pore length can be expressed by 
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l? - (47) 

(43) 

ne e 

RT sin é /d7 
co 
1/^ 

(47 = ) 

2trr^f%u/' k-p. co 
. / 2  

(48') 

in Tvhich we have let 

k-\-» = (49) 

irtiug Equations 47' and 43' into Equation 39 yields 

co 
k_.u/c0" 

CCS Ip i sin lb 

Uoon rationalizing the second terra we cet 

— y%0 cos & v/co sin jf) ) (50) 

iience 

= /̂co cos ll) 
a ( cocg -f- /co sin ̂  ) = bi 

(51) 

in which we have let 
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/cô cos ih 

d 

(52) 

_£ 

impedance Z^i can be considered equivalent to series combination oi 

resistance R_^' and capacitance C^. That is 

Z. = Ra - -5- = 2' - Z''i (54) 

We can find an expression for and Cj^ as follows. From Equations 33, 

51 and 54 we have 

= 

2'" - 22'Z-'i - 2''- = 
-r b'-

Upon equating real and imaginary parts in the above equation we get 

/ 

' ' (.2 (36) 

Using Equation 56 in equation t»5 yields 

r-7 ' î ~ Î.2 
^  —  = 0  

a ^ + b -  ' 4 ( a 2 + b - )  

The solution to this equation 
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2(a  ̂b") 

Using Ecuation 57 in Equation 55 v 

1/2  

y-" } 

2(a b^) 

R. = Z' = a-

2(£~ 3 ; 

1 / 2  

we can simpiiry tne a&ove equations 

R. Da Levia (12) has tabulated ^ and p. ; 

our experimental case we have 

junctions at A. 

à = / w/d < 1 (41') 

sin W ̂  1 

casé « 1 

u = 1/2a = 1/2 r. y co/'D 

(59) 

(60)  

(6 i )  

In a qualitative sense condition 41' occurs when 

.s siïïaii cosparec ro rne len^tii 

^ (d/ùj)-/^ 

"he diffusion constant u ro: 

the radius of the pore 

•i- of the diffusion region in which 

ion is kno^n to have a value at 25°C o'i 
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or 3./ou X 10"' radians/sec. Kence i.: order for condition CO occur in 

icu; ive li 3uc.1 

-, : /2 

1.2 

(uiax) = 1.4 X io" cr-i. (41' ')  

.-".cec; to ou; we cdservc condition 41" i-

sas. li I, J will 5e siaoî'/n ic :er. 

aon 1- ;ions uu -o il. u-iiuj-c. w£ _w 

:or;;d£reg ;o D. Hence Scuations recuce co 

icu; :ion oji wiua en a us .ons ma 6i into icuauion 

62 yields 

1/2 

icc 
(62 = )  

i: ;he ^aré aciti-nce par unit oore 

inown ipplying Equations 59 Eeuation 47' mat is 

)nl/2 
( 4 7 ' ' )  

àence ;£racnic rri^eaance in the oore ur.cer concition 
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essentially just a capacitance independent of frequency. Note that the 

Faradaic resistance is negligible here. Let us express Equation 62' in 

terms of known quantities. We have 

% = 27rr̂  x 

r 

where x is the double layer capacity in farads/cm , p is the resistivity 

of the Agi in ohm-cm and t is the thickness of the Agi along the pore 

wall. Hence Equation 62' becomes 

and 

ra = 

Ca 

2trr, 

2irr 

2r[ x + f^cpro ] w 
2RT 

px + F^Cprp 1 
L 2RT J 

1/2 

1,1/2 

(63) 

(64) 

The impedance Zp of np pores is the resultant of the pore impedances 

connected in parallel. Assuming each pore has the same radius r^ the 

pore impedances are equal. Hence 

4 - %  

Using Equations 54 and 8' we get 
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Equating coefficients above ecuation yields 

Cp = n-,. Ci ( 63) 

surraca area 0 1  pores is 

2 
ripn-rQ (67) 

Hence by use of Equations 63, 64, and 67 we get 

p co 
-1/2 ,.l/2 

-p 2t 

co (68) 

-•1/2 

r ( X 4- - '^o-o/ co 
2RT 

in which we have let 

(69) 

9i 

- o 

2 T ( % 

1/2 

i 
(70) 

 ̂nc v-:ucii. :tity (? Coi"o/25.i) is the Faradaic capacity Cf in the pore as shown 

comparing Equat ions 47 and 47' 
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end 70 fùr negative potentials. 

iea; or Lver loaiae-£olutior crzace 

We hav£ shown that the impedance Zo at the AsI-soLution interface 

Uj^ yj COiJ-^ 

lûcpRp - i uCpRp - i 

'sing Equations 26', 27', 68, and 69 we get 

/b) + i WCn (1 

Zg = 
CO Cr. i CO C.. 

uoon rationalizing we 

i(2CD ̂  %/y^) 

2G.; 60 -r 2CpK (JÛ 1/ : 
(72) 

:inc£ in-padance Zg can be represented by a series cortb 

capacitance we have 

.nation or 

resis: 

Ro - i/ WC; ( 7 2 ' )  

icuatin:^ real na imaginary parts or LCIU tions 72 and 72' 
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l_ 
Ce 

2Cq + K//I0 

2CQ + 2CJ3K//CO + K^/ CO 

(73) 

R, 
K//co 

S " 2 iy2 2 
2% CO + 2CDK CO + K 

(74) 

The Impedance of Solid Silver Iodide 

Solid Agi contains Frenkel defects, i.e., Ag"^ ion vacancies and Ag"*" 

interstitials corresponding to negative and positive charges respectively. 

These points defects give rise to a space charge. For a pure crystal the 

concentration of vacancy and interstitial defects are equal. However, in 

practice the crystal contains impurities. Immobile cation impurities 

suppress interstitial defects while immobile anion impurities suppress 

vacancy defects. Hence one of the defects is usually reduced to such low 

concentrations that it can be considered insignificant. Using the 

Boltzmann distribution of point defects for a crystal containing 

immobile cation impurities and the Poisson equation the surface charge 

in e.s.u./cm^ in the crystal is 

= ± 
€ckTNA(=) 

2v 

1/2  Y_(o) 
- Y^(o) - 1 

1/2  

where 

Yc(o) 
eV^(o) 

icT 

in which Vf,(o) is the potential just inside the surface of the crystal 

relative to the bulk lattice, ™ ) is the number of Ag"^ ion vacancies 

in the bulk lattice, and is the dielectric constant of Agi. The 
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+ sign applies when Vq ( o) is negative and - sign when Vc(o) is positive. 

A similar expression is found for a crystal containing immobile anion 

impurities. For a crystal containing completely mobile impurities the 

surface charge is the same as for a pure crystal and is given in 

e.s.u./cmf by 

r  2 N/ (" )  
""cr = L ; J sinh 

eVc(o) 

2kT 

This is the same form as the charge density in the diffuse layer in solu­

tion. Here N^^(co ) will depend on the impurity content. 

The capacity of the above space charge is 

dcr. cr 
'cr àV^(o) 

(75) 

Hence for the case of immobile cation impurities we get 

"cr 2kT 

N% ( = ) CçkT 

Ztt 

1/2 Y (o) 
e - 1 

Yc(o) 
- Yn(o) 

For the case of immobile anion impurities we get 

Crr = — 
cr 2kT 2ir 

1/2 -Y (o) 
+ 1 

[e-Yc(o) + Yc(o) - l]l/2 

where N^(oo) is the number of Ag"^ ion interstitials in the bulk lattice. 

For the case of completely mobile impurities we get 
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good approximation to the parameters C and 

ly low fracuenc} compare VAu 
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J. :LnJ rc^issarcû vaiuio aù yOCii-.zxai 
O ior Agi elccLroda v9 in . 102N XHOj are witih cl:2 
correspondir.g c&lculatcd velues. The cleterr-iaec valuer of Q~ 
K, C' end ere also li^ecd 

à V V̂. CgxlC- KxlO^ c = 
Exu Celc Exp Celc 

2D Û 1. 610 1 .6:3 4C0. 403. 
495 1. 233 1 .240 315. 6 7 
750 1. 043 1 .053 276. 8 277. 4 
1000 9420 .9335 5 254. 5 

5540 .6530 203. 1 203. 0 
4944 4933 .4970 1 / /. 6 177. 6 
9168 . 3S75 .3969 162. 6 163. 2 

1 6 .  7.134 142.1 

256 1.445 1.443 419. 0 414 . 6 
499 1.116 1. 123 _• 2D . 324 C 
750 _9620 .9537 284. 3 233 .£ 
1000 .6570 . 6E48 259. .4 
2440 .6000 .5993 204. 0 204 
4944 .4579 .4566 176. 5 177 .0 
9168 .3639 .3661 161: 161 .4 

14.5v 7.745 5.544 132.1 

23 6 1 .299 1 .297 435. . 0 429 . 5 
499 1 .018 1 .021 366, . 6 234 
750 .U/35 .6762 231. . Û 291 .4 

1 \ J V >J .7835 .7240 265, .7 265 .5 
2440 .5530 .5541 206, .4 207 
4944 .4254 .4239 177 , 178 .2 
9168 .3403 .3404 161, . 6 161 . 6 

13.54 7.336 4.35: 136.7 

256 1. 232 1 .233 447 C; 440. 4 
499 9770 .9746 . 6 342. 5 
750 8375 .8383 300 .0 198. 2 
1000 7500 .7511 272 . 6 271. 
— 'W 5207 .5324 211 . J- 4. 
4944 4037 .4076 131 .3 ISl. Zf 
9168 • 

3273 .3273 184 .3 164. 3 

256 1. IS 6 1 .187 450 .7 444. S 
499 9440 .9413 348 .3 344. 7 
750 S165 .8111 300 .S 299. 4 
lOOO 7250 .7275 273 . 1 272. 1 
2440 5154 .5171 210 . D 210. 6 
4944 3975 .3965 179 .7 180. 0 
9168 3189 .3182 162 .4 162. 4 

12.65 7.12S 

1 2 . 6 2  .969 

.933 lis 9 

^669 135.8 
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.0- co 
r-l 

i 

r-l 
CO .-I 
I 

c 
I 

(o 
^'1 

I 

•:o 
i--. 
c-i 

i 



www.manaraa.com

Table 3. Continued 

P V '^V CgXlOr KxlG^-

-1%^ 25Ô 1.123 1.124 464.c 456.2 12.80 6.756 3.313 139.4 

Calc , E:-:p Cal c 

255 1.123 1.124 464 .  Ô 4o o .2 
459 .8990 .8264 357.2 353 .0 
753 .7750 .774% 306.3 303 

IvuO .6950 .6564 279.4 278 .  2 
2440 .4571 .4432 215.1 215 .  2 
4944 .3842 .3241 1B3.7 183 .9 
216S .3105 .3104 166.0 166 .0 

1.175 1.175 462.2 455.6 13.10 6.659 3.52: 
455' .3230 .5265 354 . •w' 3s 1 .1 
750 .7360 .  7560 305 303 ,9 

lOOG .  7120 276 .2 275 .4 
2443 .5047 .  ùOsB 211 .7 
4944 .3653 .3867 160 .  0 ICO 
916S .3133 .3138 162 162 .4 

25 5 1.258 1.255 466. 6 430 .  3 
499 1.000 .  9 S O V 357. 354 .4 
750 .0460 .6465 307. c 306 .3 

1000 .7520 .7521 273. 277 .4 
2440 .5235 212. 7 213 .5 
4544 .4001 .3551 IS 1.  0 131 
5163 .3204 .3208 163. 2 163 .  2 

13.36 6.53S 6.1( 

It is observed that the calculated and experimental values of Qy and 

Ry agree very well, usually within 1 percent. 

The value of Rq should be independent of potential at a given icnic 

strength. The slight variation that is observed rr.ay be due to a variation 

in the geo-eery of the cell. 

•j 
Reoresenrative plots or Cy vs ———— are sho-v'n in Figure 7 for 

^  1  1 / 2  
elcc-roca at . iX. .Representative plots of vs ^ are shown in 

Cy 

Figure 3 for electro-^ v,-9 at .IN. 
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do 

The experimental nr.d v/iluoi; at 
pDccntial !p for A;^! elcc-ro.ie 10 ir. .1027 Kl^Oj arc compared 
^ith the corresponding calculated valu;:-^. 'ia.a dctcr^inad 
values of Cj^ IC, C' , and ÏI., ar2 also listed 

0 cvv cvxlo- kxlo-
c^lc lizct Calc 

2t 0 1. 6010 1 .5990 361 .9 353 -9 
4£9 2760 ]_ .  2c^0 281 .3 23 2 . ]. 
750 1. 1120 1 . 1130 243 . 1 249 -9 
1:00 1. . 0060 1 .0050 2''5 .0 230 . 0 
2440 7400 .7345 188 .2 132 •: 

4%44 5753 .5807 163 - — 163 . 1 
51cS . •  4601 .4525 156 i. 157 . 1 

25 5 1. j_ .3070 301 .4 372 .0 
499 1. 0620 1 .0720 293 1 2i4 .3 
750 9430 .9421 260 .0 . 

8600 . d571 233 . 1 233 . 5 
2440 6420 .  637 3 101 .9 19 2 . 4 
4044 50S3 .5030 170 170 . 2 
2163 -

4-148 .4236 153 
• -

153 . 1 

25 6 1. 1460 1 .  1460 405 . 6 3c 3 . 0 
499 3520 .9533 307 .0 J'u' _ 
750 c-:-JC .9445 255 7 264 . 7 

1000 7720 .7723 242 . 5 242 . c 
2440 5357 .5817 193 .4 194 .3 
4044 4704 .4669 171 .0 171 . 0 
9166 3363 .3909 153 .2 153 .2 

^00 G.577 4.655 142.6 

25 5 1.0130 l .OlcO 419. 0 393 . 1 
499 .5540 .8557 314. 3 307 .9 
750 .7610 .'235 270. 6 269 

1000 .7000 • j • s 246. 3 246 .6 
2440 .5385 .5353 195. 'J 195 .9 
4944 .4365 .4332 171. c: 171 , 6 

)G8 .3642 15% 

zd i .3730 .9690 425 .9 403. S 
499 .6120 .8160 318 413. 0 
750 .7250 .7281 273 . 6 273. 7 

1000 .6660 .6692 248 249. 6 
2440 .5157 .5114 195 .4 196. 5 
4944 .4153 .4150 171 .  1 171. 1 
916S .3463 .3505 157 . 3 157. 3 

22.13 8.263 3.122 142.0 

20.76 8.459 2.462 140.0 

lO.OO 8.085 2.014 140.4 

16.72 7.663 1.932 139.2 
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Tabla 4. Conuiiiuecl 

^ c^xlc- kxlc" q: 
11 xù Cale iîxv Cal: 

256 .9233 .:'193 4 3 2. 412. 3 
499 .7740 .7770 322. 3 319 .  S 
75 C .oSlO .6945 276. 6 277. 9 

lOCO .6370 .6391 251. 2 1 
2440 . 4545 .4901 157. 2 . 2 
4544 .4014 .3985 17 2. 2 172. 1 
S153 .3331 .3371 157. 8 157. £ 

-137 256 .8380 .  8850 407 . o 415 .5 
-^9 ^7480 .  7510 325 322 .0 
750 .  6700 .6732 279 200 .0 

10:0 .6200 .6205 253 255 .  0 
2440 .4829 .4700 190 .6 190 .  0 
4944 .3920 .3898 173 .  2 173 .2 
9166 .3259 .3302 158 .9 158 .9 

- j-b i. .8529 445 .  2 422 . 5 
499 .  7 230 .7258 r. .4 
750 .6495- .  6516 223 284 . i  

1000 . 6010 .6014 . 0 259 . 0 
2440 .4696 .4649 •201 .4 202 .  7 
4944 .3324 .3800 175 .7 i. /  Z" .  o 
9168 .3183 .3226 zo .2 161 .2 

-209 .8490 .8472 446 _ ]_ 423 . 6 
499 .7190 .7215 331 .4 .  2 
750 .6460 . 6430 205 .  û 

1000 , y oU .5962 257 259 . 7 
2440 .4675 .4023 202 203 . 3 
4944 .3309 .3785 176 176 .4 
9168 .3170 .3214 161 .8 161 .8 

-240 256 .8390 .8376 445 .8 404 .9 
499 .7120 . 7144 . 6 325 .  3 
750 .6400 .6422 225 .  6 286 .3 

1000 .5932 .5932 258 -9 260 . 7 
2440 .4646 .4597 203 • 204 .2 
4944 .3789 .2764 177 .3 177 .  3 
9162 .3157 .3200 162 .7 162 .7 

L8.37 7.363 1.682 13S.! 

1S.69 7.219 1.3S5 142.1 

1.578 142.6 

18.69 7.191 1.548 143.5 
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T-iblc 4. continued 

r\: -• n- %%1c-
>-p 

96 256 .8545 .8517 451.6 424.8 18.88 7.146 1.605 142.6 

256 .8520 .8492 451 "v 

4C;9 .7190 .7223 333 .9 325 . 'L 
750 , .  64 30 .  c4o~ 285 .2 286 .0 

1000 .59SG .5984 .6 260 
2440 .4670 .4620 20z 203 .  6 
4544 .3812 .3737 176 .8 1 / b .7 
9168 .3177 .3219 162 • 1 162 .  1 

256 .  8545 .8517 451 .  6 424 .8 
459 .7210 7 ç / _ -, 333 3 28 _ 7 
/ 3 G .6470 .6498 234 .  5 285 .  5 

ICOO .5991 .5996 25? .7 255 .8 
2440 .4382 .4636 201 .£ 203 . 1 
4944 .3310 ' .  375 2 176 - zl 17 6 .2 
9163 .3150 .  3223 161 . g 161 . o 

256 .0930 .8890 465 . 7 433 7 
439 .7430 .7460 338 .5 333 - 8 
750 . 6620 .6659 . 289 .0 

ICOO .6610 .6119 260 . 4 262 —r 
2400 .4/41 .4687 202 .7 204 .0 
4944 .3350 .3622 175 c 17 6 .  5 
9163 .3206 .3248 161 .8 161 .8 

7.152 

256 .9970 .9939 47 2. 3 i:-4 6. 4 
455 .2080 .8125 345. 
750 .7120 .7139 29 2.  6 29 3. 1 

1000 .6490 .6499 263. 6 266. 
2440 .4930 .4b66 203. 7 202',. 0 

4944 . 3543 .3925 176. c 176. S 
9168 .3271 .3318 161. 7 161. 7 

13.21 6.252 1.814 143.1 

19.19 
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Table 5. The experimental capaciùazce :.i\c rcslszazce v&lues at 
poCez:icl Ç for Agi y. _ctrc^e v-9 In .ClC2-v liXCc ;;.re ccc/ari 
with the corresponding calcul.. lec velues. The deeermined 
values of CQ , K, C ' , and :Iq are also listed 

. - 2 
'̂ y*. iCi,U l'unie" 

kx;v Ca 1 c ex- cclc 

-ij 

255 1.0320 
455 .7830 
750 .6520 

1000 .5CCG 
2440 .3963 
4 S 44 .2974 
9168 .2311 

1.002: 
45 3 .7650 
750 . 6410 

ICOG . 5665 
2440 .3394 
4944 .2933 
9168 .  2239 

255 .9250 
499 .7460 
755 .6250 

1000 .5562 
2440 .3837 
4544 .2905 
916G .2268 

0340 1455 
75 33 - a .l 
6565 15.. 2 1283 
5ul5 • 1 1245 
3968 1154 1155 
2962 1112 1114 
2330 1068 1008 

&.CCÏ 4.S83 5.957 1G4: 

0020 149 6 l-;.9 3 
7624 1351 
6427 1286 
5 65 à 1245 1247 
3894 1157 1159 
2915 1113 1115 
2302 1089 1089 

9540 1505 1507 
7476 1360 1361 
6303 1292 1294 
5575 1254 
3^29 1162 1165 
2880 1119 .L l25' 

1094 1094 

6.145 4.5G; ^9 1G45 

2.600 4.770 5.459 105: 

-47 

-69 

256 .9520 .9498 1516 1515 
499 .7220 .7240 1353 
750 .6095 .6115 1294 1296 

1000 .5402 .5418 1252 
—u .575/ . 5745 Ilo2 L. 
4944 .2859 .2833 1119 l l - j  
9163 .2247 .2265 1093 1093 

256 .9310 .9294 1514 1517 
499 .7100 .7105 1362 1365 
750 .5984 .6010 1294 1296 

1000 .5312 .5330 - :: 2 1255 
2440 .3709 .3694 1159 1163 
4944 .2831 .2804 1115 1017 
9163 .2227 .2246 1092 1092 

9.057 4.633 5.062 1055 

9.142 4.5S3 4.727 1054 
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table Continu 

V cv 

—Ji 256 .0040 .9025 15 IS 1519 
4i> y .6920 .6S30 1362 1366 
750 .5850 .5375 1293 12^6 

1000 .5204 .5218 1252 12o^ 
2440 .3636 .  3628 1159 "••>51 
4944 .2778 .2757 1113 
9163 .  2195 .  2211 1089 1089 

255 .^6S0 .8876 1513 1515 
4i:9 .  6830 .683:: 135% 3 • 
750 .5793 .  5808 1288 

S.-'.' v 
4244 
51^8 

. 3 _3 j 

.3506 
,2760 

,5163 
,3558 
,2733 
,2197 

1247 
1153 
11C£ 
1064 

1250 
1157 
1110 

S.009 

8.460 4.534 L973 1046 

256 .8700 .8650 1521 15 2^ 
499 .6710 .6715 1367 
750 .5695 .5710 1256 1300 

1000 .3073 .5080 1255 
2440 .3553 . 3546 1161 1164 
4S44 . 2718 .2700 1116 1117 
5168 .2152 .2167 1051 1051 

8.608 4.487' 3.727 1052 

-213 zd û 
490 

.6650 

. 6680 
. o j---
.6631 1352 

750 .5665 .5662 1250 
1000 .5052 .5056 1248 

.  3543 .3534 1153 
4544 .2714 .2655 1105 

.2147 .2166 1084 

12S5 
1252 
1156 
1111 

^S46 4.468 3.715 1046 

264 256 .8600 .8556 1514 1518 
455 .6655 1385 1363 
750 .5653 1287 1252 

.3546 .5044 1246 1250 
2440 .  3545 .3533 1152 1156 
4544 .2718 .2655 1107 y 

1083 
1105 

S 168 .2154 .2174 
1107 y 
1083 1083 

9.103 4.470 ,615 104: 
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Table 5.  Continued 

u cv r, cQXio^ kxlos c r, 

Exp Cale Exp Cale 

256 .8650 .8640 1517 1517 
499 .6685 .6690 1362 1362 
750 .5684 .5696 1290 1293 

1000 .5064 .5074 1248 1251 
2440 .3564 .3555 1154 1157 
4944 . .2737 .2718 1109 1111 
9168 .2174 .2190 1085 1085 

256 .8810 .8808 1516 1519 
499 .6785 .6785 1361 1363 
750 .5755 • .5764 1289 1293 

1000 .5129 .5127 1247 1251 
2440 '  .3599 .3587 1153 1157 
4944 .2755 .2744 1109 1111 
9168 .2199 .2216 1085 1085 

256 .9110 .9104 1523 1524 
499 .6830 .6937 1364 1366 
750 .5865 .5864 1291 1295 

1000 .5198 .5203 1249 1252 
2440 .3642 .3626 1155 • 1157 
4944 .2797 .2779 1110 1111 
9168 .2230 .2253 1086 1086 

-288 

-321 

-345 

9.211 4.497 3.624 1047 

9.569 4.465 4.026 1049 

10.15 4.372 5.144 1051 
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Table 6. Thu uxp^rineutal capacicaacc aac: rcaâacaace values at 
pataauiai I'j for A^I elacarode #10 ia . 0I02Z' ICaOc ca:: 
wiuh a he ccrreapoadina calculacad values. Vac dataau.iaad 
values of Cy^, K.. C' , aad ara alao listed 

, '•• a ̂ %xlg' 

Ca i a call 

2:'6 1.0200 1.0260 1434 1415 
4% •) .0150 .8138 1304 1397 
750 .7010 . / C la 1247 

1000 .6290 .6299 1215 1212 
2-40 .4514 .4519 1142 
4944 .3414 .  3516 1111 1107 
916S .2677 .2377 1089 1068 

3 .8550 .8534 1462 1449 

/ à Û .5900 .5926 1249 1053 
V ~ -0 •- à 1211 

244-0 .3937 .3836 1133 
4944 .3095 .  3056 1096 1097 
5165 .2464 .  25 25 1076 1076 

1 -, 25 â .6350 .0224 1469 
495 .  6585 1216 
750 .5750 . 5 7 o 6 1253 1257 

IGOO .5209 .5214 121a 1220 
2440 .  3o65 .3616 1136 1140 
4944 .3049 .3015 1100 1101 
9163 .  2444 .2501 1030 1080 

25 .7990 .7953 1474 1^59 
4̂  ̂ .64G0 .6439 1320 1321 
750 .  5591 .5620 1253 1259 

1000 .5004 .5092 1216 1222 
2440 .0799 1137 1141 
4944 .3013 .  2970 1100 1102 
5162 .2427 .2482 1081 1081 

47 255 - -w53G .7655 1472 1459 
495 .  6200 .626 o 1319 1320 
750 .5438 .5462 1251 1258 

lOCO .4959 .4560 1214 1221 
2440 . 3745 .  3672 1134 1140 
4944 .2562 .2937 1099 1101 
9168 .2407 .2458 1080 1080 

13.42 5.670 3.340 1052 

12.57 5.1:5 2.506 1C48 

12.75 5.065 2.225 1052 

13.06 4.996 2.136 1054 

13.29 4.951 1.958 1053 
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Tcblû 6. Continued 

0 V ix.\/ clG- C 

LXP c&1( C;:, le 

-c9 

-127 

-21: 

256. .75:0 .7476 1477 1460 
499 .  6030 .6113 1321 1321 
750 .5342 .5366 1253 1259 

lûûo .4660 .4663 1 r 

.3654 .6635 1136 1140 
4544 .2949 .2915 1100 1131 
9168 . 2656 .2446 i .6d 1 1661 

255 .7230 .7200 147c 1463 
493 .5689 .5919 1323 1323 
75C .5120 .5213 1254 

1000 .4742 .4750 1223 
.6602 .3557 1136 1141 

4944 .2090 .2057 1100 1102 
S 165 .2354 .2402 1:61 

256 .7070 .7043 1465 
455 .5775 ,5604 1324 1324 
750 .5659 . 5' ' îi 1261 

/, : ro '• -1 C . 0 0 O 
2440 .3545 .3505 1135 1140 
4544, .2655 .2621 165 5 1161 
916S .  26 Z/ .2375 108G 1060 

256 .6330 .  6c 06 1467 1476 
. 5611 .5666 1330 

7 5 Û. .45 60 .4935 2 3 0 12.34 
1000 .4551 .4555 1221 
2440 ' '--7 6 .3434 1136 1^43 
4SS4 .2805 .2770 1j.G1 
9163 .2285 .  2335 1052 1662 

255 .6760 .6736 1469 1470 
45 5 .5557 .5564 132b 1327 
750 .4918 .4940 1263 

IGGv .4511 .4515 1219 1225 
2440 .3452 .3407 1137 1141 
455^. .  2752 .2750 1100 1102 
5 _^ .2268 .2319 1080 lOSO 

13.51 4.003 1.7G3 1054 

13.27 4.557 1.635 1053 

13.12 4.634 1.526 1055 

13.G3 4.800 1.504 1G53 
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Tab le 

y '^\ï -clo-

cale 

•351 

250 .6690 
499 .5506 
750 .4575 

iOOC .4470 
.3429 

4544 . 27 09 
9 160 .2259 

255 . 6710 
49& .551S 
750 .4802 

1000 .4491 
2440 3"' 
4S44 
5163 .2275 

256 
405 
750 .4540 

lOCO .4529' 
244C .3475 
4':: .2:30 
3166 . 225 2 

256 .7-00 
409 .  5 ; 4^ 
750 .5053 
lùùv 
2440 
4344 
3168 

./j 
2&50 
2331 

. •i' 
5531 1322 
42S5 1263 

33^4 1142 
97 36 110-'-: 

3.17 4.767 1.4S2 1G57 

231C 

6 go 5 
5550 

/ y -
5S1E 

1457 
1335 

1335 

1034 

1475 

4915 1 264 1 260 
44$6 1 205 1 200 

1 1:01 1 140 
2752 • 100 107 
2315 036 1 086 

s-.' 3 

1167 
45 30 1224 229 

27 1 
27 72 1105 106 
23 1025 305 

.7074 15 16 

.5701 1341 1330 

.5C3C 1267 1271 

.4627 1226 1232 

.3475 1143 1146 

.2814 "• '• 06 1105 

.2390 10S6 10S6 

3.31 4.7ï& 1.478 10: 

13.55 4.755 1.547 1052 

14.24 4.568 1.754 lOC 
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;bic 7. The capaci;:;:v.cc .'::nc rcsiszcnc^ valuer: .::: 
potùzzicl W foT Av-I clocczcéc vrll in .01021-: ;_.rc cc.i 
^vith the ccrrespondin;-: calcul^zeO values. The cetcrxined 

C^) ,  K j  C '  , and Rg arc C.I20 lifted • 

V C.\J Ry Cgxio- KxIO" 

£xp Calc zxD C-ilc 

-9 .5760 .5763 1413 1406 14.13 7.183 2.119 

- lijc 

256 .9760 .9763 1413 1406 
4 S 2 .8100 . OOU D 1312 1310 
750 .  .7160 .7143 1267 1266 

1CÛ3 .6510 . 6517 1241 1240 
2440 . 434 0 .  4c4j 1180 llBl 
4944 . 00 OS .  OoOc 1151 1152 
9152. .3130 .3146 1105 1135 

25 6 .9290 .9262 1409 1407 
43C .7740 .7742 1000 100;; 
... ., 

/ _/ . W 4.; C 0 .6364 lOiv 1264 
ICCO . V V .6276 - 1237 
2440 .4715 .4706 1174 1173 
4944 .3753 .3745 1147 1149 
9168 .  3090 .3102 1132 1132 

256 .8900 .0900 1415 1411 
459 .7400 .7477 1011 . 1010 
750 . oObO .  6656 1265 

lOGO .6100 .6104 1200 1242 
'• - '---O .4622 .4614 1179 
4S'4A. .3700 .3694 115 2 1150 
y ICS .3053 .3072 1.1.07 1007 

kZ) Ô .ùoOO . .6542 1420 1414 
4v5 .7230 .7230 1016 
750 . 6450 .  64 64 1271 1272 

10:0 .5940 .  5944 
2440 .4542 . 4 5 01 l l .Ov lis 7 
4>44 .3652 .3647 1157 1158 
9168 .3031 '-•0--5 1142 1142 

14.90 7.066 1.S35 

15.IS 7.C67 1.7: 

-77 256 .8550 . .8542 1420 1414 15.40 7.102 1.631 1115 

250 .2290 .3286 1400 1414 
499 .7060 . 7057 1010 1318 
750 .6030 .6334 1273 1274 

1000 .5832 .5840 1247 1243 
2440 .4483 .4484 118G 1190 
4944 . 0600 .. . - J  1161 
9168 .3027 .3039 1145 1145 

15.69 7.183 1.525 
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7. Continued 

"V _ .V -

- L O S  25 6 .OCCO .3006 1410 1417 
499 60 AO . C-„03 1315 
75: .  .6170 .0_71 1275 1277 

1000 . 570 - .5702 1249 l.w 1 
2440 .4403 .4402 1192 119 5 
4244 .357:: .3571 1 .  . J .  

3 103 .2^33 .2>S5 1143 1148 

2:._: .7330 .70 36 1420 1423 
49^ .6730 .6734 1329 1327 
750 .6030 .6076 1204 1204 

- C V u .5676 .5624 1253 i250 
2440 .4376 • .4364 i. 1230 
4344 .  3550 .  3554 1172 1172 
5168 .2555 1156 1156 

39 7.1S9 1.430 1126 

15.93 7,  1134 

-27: 

.7723 1435 1430 
499 .6663 .6660 -2 J J 0 1335 
750 .6020 .6019 129 2 1292 

1000 . 5560 .5577 1264 1266 
2440 .435 0 .  4- 3-4 2 • 1207 1203 
4944 .  3555 .  3545 1179 1130 
516S .2977 .2993 _  L C Z J  1165 

.7725 .7726 1426 1421 
42 9 .6660 .6661 1327 1326 
750 .  6030 .6022 10cj4 1203 

1003 .5576 .5531 1257 1257 
2440 .4363 .<349 1200 1203 
4944 .  3564 1173 1172 
316B .2936 .3002 1157 1157 

256 .7773 .7775 1423 1410 
499 .6700 . 6702 1326 1324 
750 .6050 .6060 i2o i 1231 

1^.00 .5619 1254 1255 
2440 .4390 .4373 1198 1193 
4944 .  3593 .3580 1170 1171 
S162 .3010 .3027 1155 1155 

16.16 7.252 1.336 1143 

16.30 7.274 1.33: 

1û 

.ijo 

6.55 7.504 1.343 1134 
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Table 8. The experimental capacitance and resistance values at 
potential ^ for Agi electrode #10 in .00102N KNO3 are 
compared with the corresponding calculated values. The 
determined values of Cjj, K, C' , and are also listed 

0 cv Rv cQXio^ kxlos 

Exp Calc Exp Calc 

256 .7030 .7010 8140 8148 
499 .5220 .5228 7922 7927 

750 .4340 .4366 7820 7826 
1000 .3820 .3840 7763 7766 
2440 .2605 .2600 7630 7630 
4944 .1775 .1939 7571 7562 
9168 .1105 .1531 7537 7523 

256 .6360 . 6348 8140 8151 
499 .4800 .4794 7914 7917 
750 .4010 .4032 7800 7811 
1000 .3540 .3564 7744 7747 
2440 .2460 .2455 7606 7606 
4944 .1730 .1861 7546 7536 
9168 .1100 .1493 7510 7497 

256 .5890 .5861 8140 8120 
499 .4490 .4512 7888 7885 
750 .3800 .3835 7773 7778 
1000 .3410 .3415 7715 7715 
2440 .2410 .2406 7575 7575 
4944 .1710 .1858 7516 7507 
9168 .1100 .1517 7480 7470 

256 .5820 .5784 8140 8122 
499 .4440 .4474 7875 7888 
750 .3770 .3813 7767 7782 
1000 .3410 .3401 7707 7719 
2440 .2410 .2407 7580 7580 
4944 .1710 .1865 7522 7513 

9168 .1100 .1527 7484 7477 

256 .5560 .5540 8140 8102 
499 .4300 ..4325 7874 7867 

750 .3690 .3705 7758 7762 
1000 .3320 .3316 7691 7699 
2440 .2370 .2369 7560 7560 

4944 .1695 .1849 7502 7493 
9168 .1100 .1523 7470 7457 

- 1  

-25 

-64 

-72 

•105 

5.587 3.153 6.025 7463 

6.232 2.964 4.186 7441 

7.138 2.925 2.801 7420 

7.301 2.943 2.575 7428 

7.566 2.925 2.182 7410 
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Table S. co-tin 

V 

-126 

- - C O  

-251 

-zc/ù 

-v 
V C:'. Lc C '• Û;..C 

25 c .5500 .5482 S ' r 5 
4S9. .4280 .4300 7838 
750 .2670 .3691 7725 7730 

1003 .3:20 .3308 73:3 7667 
2440 .2370 .  2371 7529 7525 
4G44 .  1700 .1853 7470 7434 
9168 .1100 .1528 7440 7428 

25 3 .5250 .5336 8085 8059 
499 .4190 .4202 7 3 29 
750 3500 .3617 7713 7718 

1000 . 3250 .3249 3-,'L' 
. 2350 S-. 5 7317 7517 
.  1700 . 1343 7464 7452 
.  1105 .1532 7 3 3 7417 

253 .5290 .5277 8105 8085 
495 .4150 .4160 7846 7847 
750 .3570 .3584 7741 

1000 .3220 .3222 7333 7678 
2440 .2340 .2335 7539 7539 
4944 .  1700 .1846 7477 7474 
S158 .  " 05 .1539 '! Lù.L 7440 

253 .5260 .5243 8140 8103 
45 9 .4120 .4143 7873 7869 
750 .3530 .3574 775C 7733 

.3220 .3215 7691 7700 
2440 . 2340 7562 7562 
4044 . 1/ 00 .1847 749 6 7498 
S138 .  1541 7469 /4 3 3 

'.L'J 3 .5280 .5261 8150 
459 .4140 7885 
750 .  35:0 . 35C4 7770 7783 

1000 .3220 .3225 7705 7720 
.2360 .2347 7582 7582 

4944 .1720 .1864 7521 / ̂  

9133 .  1115 .  1561 7588 7485 

253 .5370 '• 3/ ' .  3 8110 8071 
49 D .4190 .42Ç3 7843 7833 
750 .3600 .  3325 7731 7727 

.3250 .3253 7663 7664 
2::: 4 G .2320 .2369 7527 7527 
4244 .1725 .1382 7466 7464 
9168 .1120 .1577 7433 7430 

cnxlg-

,0:7 

7.961 2.512 1.3: 

1.837 

:.2e8' 2.587 l.&2< 

8.744 2.86^ 

721 

7:72 

7420 

i.sll 2.869 1.870 744: 

1.S86 7389 
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'icuze S. cf reciprocal series aquivalenz capaci^ar^a or 
fracuciricy s-z various pcz&ntials (:r.illivoits relative to 
zero point of charge) for Agl-acueous ÏCXO- syste— 
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resulting from the compression of the solvent molecules by the high 

electrical field emanating from the surface which is believed to cause 

the increase also observed in the double layer capacity at the Hg-solution 

interface at hi^ negative potentials. 

At high potentials the double layer capacity approximately equals 

the Stern capacity unless specific adsorption occurs. Since the Stern 

capacity is independent of the electrolyte concentration then the double 

layer capacity X values at the various electrolyte concentrations should 

tend to converge at high negative potentials. However, no such conver­

gence is observed at high negative potentials. This non-convergence of 

X indicates that specific adsorption of ions occurs in this potential 

range. An observation of the double layer capacity values for the Hg-NaF 

solution interface based on Grahame's work show that values of x at .IN 

and .OIN electrolyte concentrations converge at high negative potentials 

while the X values at .OOIN fall somewhat below this convergence. 

The surface charge density cTq at a given potential ij) can be ob­

tained by integration of the X - 0 curve provided that d ̂  ~ d^ q. 

Since do-^ = xd 0 ̂ (!') 

then by assuming dip = dip ̂  (83) 

0% = lo 

The conditions under which Equation 83 is valid are found as follows. 

Let (ft denote the Agi half cell potential. That is 

# = E c  -  E ^ a l  ( 8 4 )  

Potential <p can be expressed by 
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at high negative potentials then this integration would yield only the 

surface charge density cTq in these potential regions provided Equation 83 

is valid. We will compare our results with those of other workers and 

arrive at possible conclusions relative to these assumptions in this way. 

Most recently Lyklema and Overbeek (8) and Agar (10) have studied the 

Agl-solution interface by measuring the adsorption of the potential deter­

mining ions on a Agi surface using a titration method. By differentiation 

of the surface charge-potential ij) curve they purport to obtain the 

differential capacitance CQ of the Agi double layer. It was assumed that 

d i/j ^ dij) Q, otherwise the differentiation would not yield CQ correctly. 

By setting the value of the double layer capacity x at the zero point 

of charge in .OOIN solution of indifferent electrolyte equal to that for 

the Hg-NaF solution double layer under the same conditions they obtain the 

surface area of the Agi and hence X at any other potential 0 and ionic 

strength. 

Plots of the differential capacity X of the Agl-KNOg solution 

double layer vs potential 0 at various ionic strengths of KNOg as 

determined by Agar are shown in Figure 12. Lyklema's plots of X vs ij) 

at various ionic strengths of KNO-j agree within 10 percent with those of 

Agar's except at high negative potentials where Lyklema's values decrease 

markedly while Agar's values decrease only slightly. This is in contrast 

to our observed rise in X at high negative potentials. A rise in the 

double layer capacity at the Ag^S-solution interface at high negative 

potentials has been observed by Iwasaki and DeBruyn (14). However, 

unlike our case their values do converge at the various ionic 
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ticbi^ 10. A :I double layev A in niicrc 
A\:I rc;3i;îuivity o, s::p:::j;.:cid p/O!'' 
electrode f9 at & givivi pccontial é 
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clii" r.r.c 
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27.5 

-JO 

-o 1 21.7 

2C.25 

24.6 

25.2 

25.0 

26.7 

-c.y 

-9Ô 

- 6. ' = j v, . u 

45.5 

43,7 

û 

;31 

21.C5 

zz:. 1 

27.7 

27.7 

23.1 

22.5 

31.7 

-134 

-':01 

14.cj 

15. 1 

15.55 

15.5 

15.1 

17.1 

j.. 

-.•o. z 

50.5 

63.1 



www.manaraa.com

79 

Table 11. The Agi double layer capacity X, in microfarads/cm and the 
Agi resistivity p, expressed as p/ a'  in ohms are l isted for 
electrode #10 at a given potential 0 in mill ivolts and 
ionic strength of KNO3 

.102N KNO-

X p /  a '  

.0102N KNO3 

0 X p/ a' 

.00102N KNO 

Jh x 

3 

p/ a'  

58 26.85 30.9 38 14.4 42.8 -1 6.00 58.4 

32 23.8 29.6 3 13.5 49.5 -25 6.69 72.1 

6 22.3 29.6 -11 13.7 50.5 -64 7.67 83.7 

-35 21.5 30.7 -25 14.0 52.8 -72 7.84 84.5 

-61 21.2 33.6 -47 14.3 54.4 -105 8.13 88.5 

-98 20.5 34.7 -69 14.4 55.2 -126 8.17 87.0 

-137 20.3 •34.8 -98 14.3 55.4 -186 8.55 93.9 

-181 20.1 35.9 -127 14.25 56.25 -221 8.85 99.9 

-209 20.05 35.9 , -184 14.1 56.2 -251 8.90 100.2 

-240 20.1 36.2 -213 14.05 56.85 -286 0.25 107.7 

-278 20.25 37.3 -264 14.15 58.4 -322 9.42 120.4 

-296 20.3 38.0 -288 14.3 59.0 

-331 20.6 45.7 -321 14.55 64.6 

-363 20.6 70.9 -351 15.3 88.7 
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Table 12. The t.cl double lay er capaci ty % in microf:.n:a do/c:./ '  ...na aha 
h3! reo istivty P: e i, c V. •t i,i % p/rj '  in cha^ rra 11;;":' 1 f 

do Vll a ^iven po ten tiai lb in ;"il- ivo: a a :.n 
.jlû2h ! '"""e 

X C. ; 

-9 13.7 23 .  1 

-31 14.25 30 .0 

-5.:. 14.5 30 .45 

-77 14.75 . 5 0 

-103 15. Û •O 

-152 
- -

-203 - 30 .65 

-244 15.45 30 .35 

-272 15-5 31 

-sea 15.5 32 .05 

stran;/t>i employed ai a ZLgailve pcuaatial but che^ overlap. Our % 

values agrcz very will with thosa of A^ar around ohe zero peint of charjo. 

The inaraaoin^ difforaaca batwaan our and Agar's or Lylclaa.a'3 % 

valuiii at high nagativa pctanaiala iaaicaaa that Equation 33 is non valid ̂  

i .a. dy and c. ib ^ are not approxiaacaly equal^ in this region and hence 

the differentiation of the c - ii) plot would not yield the double layer 

capao-ty X . Thus Agar'- or Lyklema's values would be incorreot in thi3 

potential rançço and so would differ from our results which do not depend 

cn the validiay of Equation 33. The indicated invalidiay of Equation 53 

at hi^h negative potentials ineans that the variation in potential V^(o) 
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1' igure 15.  Depenoenco o.i .  resis t ivi ty of Agi on potential  (relat ive to potential  at  ?.ero point  
of  charge) 



www.manaraa.com

95  

LiJ 
.q 
o 

lu 

oc; 

1 
6 

m 

o 

o 

Q o  
o 

0 
1 
o 

a 

o  
cd 

o 
CD 

o 
<-

.  o  
C\i 

o  



www.manaraa.com

signif icant  may be misleading.  By neglect ing Kp i t  is  seen chat  cnly a 

s l ight  r ise in of a '  in this  potential  region occurs.  This  is  rriorc 

reasonable and hence suggests  that  a  s ignif icant  barrier  to I"  transfer  

does occur.  Experiments were not  extended to sufficiently high posi t ive 

potentials  to pernii t  conclu-si .ons regarding a possible barrier  to Ag" 

t ransfer .  

At f i rs t  i t  may be thought that  the observed increase in p/ov 

with decrease in ionic strength of solut ion is  due to an increasing 

contr ibution by the electrolyte resist ivi ty to the irapecanca of  the pore.  

We had assumed i t  to be negligible compared to the Agi resist ivi ty.  An 

impedance formula was therefore derived permit t ing explici t  inclusion of 

the solut ion resist ivi ty.  However,  rhis  formula predicted that  p would 

vary with ionic strength in the range of ionic strengths studied in the 

opposite  direct ion from that  observed when the solut ion resist ivi ty was 

s ignif icant .  Perhaps the dependence of  p/  a '  on ionic strength may be 

explained by the change in surface condit ions with ionic strength.  At.  

any rate values of  p/  O! '  a t  the various ionic strengths tend to converge 

at  posi t ive potentials .  

We can est imate the value of CL' for  an electrode as fol lows.  We 

have 

I l2 /or\ 
CL 

Based on Equation 4lb we est imate the radius of a  oore to be 

r % 10 ^ cm o 
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We estimate the thickness T of the Agi wall in the pore to be 

T ~ 10 ^ cm 

Hence 
a2 

or' ~ 8 x 10^ —2_ 
a-d 

Using Table 9 we get for each electrode 

0''#9 ~ 1.2 X 10^ cm 

«'#10 ~ .60 X 10"+ cm 

0"#11 % .20 X lo4 cm 

We can estimate the value of p for an electrode as follows. 

Consider the value of p/ Ol' for electrode #9 at 0 = -11 in .DIN KNO^ 

from Table 10. Using the above estimated value of a* for electrode #9 

we get 

p#9 = 4.1 X 10^ ohm-cm at 0 = -11 in .OIN KNO^ 

Similarly 

pii^lO = 3.0 X 10^ ohm-cm at ^ = -11 for .OIN KNO^ 

P#ll = 5.6 X 10^ ohm-cm at 0 = -9 for .OIN KNO3 

2 
Note that we have assumed t/r^ has the same magnitude for each 

electrode. This assumption can at best be an approximation. The 

conductivity of Agi pellets at compressed pressures was studied recently 

by J. N. Mrgudich (15).' He determined conductivity values of the order 

10 ̂  to 10 ̂  ohm ^cm~^. The conductivity will partly depend on the 

impurity content of the specimen. Hence, the above magnitude and varia­

tion of resistivity among the various electrodes are reasonable. 
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The resistance R'  of  a  Agi electrode can be est imated as fol lows.  

The solut ion resistance Rsol  is  expressed by 

&sol = ksol pgol (87) 

where PgQ]_ i s  the resist ivi ty of the solut ion and is  the geometric 

proport ionali ty constant  in cm"^.  Throughout the experimental  potential  

range the concentrat ions of  Ag"^ and I" are much less  than that  of  the 

electrolyte KNO3. Hence the solut ion resist ivi ty is  simply the electro­

lyte resistivity. The values of the resistivity of aqueous KNO3 at 25°C 

at  a given ionic s trength are l is ted in Table 13.  They were obtained from 

Table 13.  The values of the equivalent  conductance in cm^/ohm equivalent  
and resist ivi ty Psol  ohm-cm for  KNO3 at  25°G in water  a t  
various concentrat ions N in  equivalents/ l i ter  

^  ^  P s o l  

.00102 141.8 6915 

.01020 132.8 738.6 

.10200 120.4 81.4 

the American Inst i tute of Physics Handbook (16).  Using Equation 87 in 

Equation 81 we get  

ro = r' + ksol psol (88) 

Since we observe that  Agi resist ivi ty p increases with decreasing ionic 

strength in the potential  range studied then R'  should vary s imilarly.  
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However,  we can consider R'  to,  be constant  as  an approximation for  the 

ionic strengths studied.  Hence a  plot  of  the vs is  approximately 

l inear  with an intercept  approximately R' .  A two point  plot  of  R^ vs 

Psol  electrodes #9 and #10 using data at  . IN and .OIN solut ion was 

made.  We determine 

R'  ~  26 ohms for  electrode #9 

R'  29 ohms for  electrode #10 

The effect ive thickness of  Agi on the electrode can be est imated once 

R'  is  est imated.  We have 
pt 

R' = ^  (77) 

Using the above est imated values of  p and R'  and Table 1  we get  

Teff  ~ 2.4 X 10"^ cm for  electrode #9 

T ~ 3,5 X 10 ^ cm for  electrode #10 

Comparing these values with the thickness T ^ of  Agi we f ind 

a f f o 
ip ~ .70 X 10" for  electrode #9 

e  

^  .80 X 10"^ for  electrode #10 
e 

These small  rat ios indicate that  very deep pores occur and explain why 

the resistance R'  in Agi is  small  compared to the electrolyte resistance 

for  the electrolyte concentrat ions studied.  
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The Capacitance C'  of  Solid Silver  Iodide 

Plots  of  the equivalent  capacitance C '  of  Agi vs potential  i/)  for  

the various electrodes are shown in Figures 16 -  18.  

The observed r ise in capacitance C'  a t  posi t ive potentials  and very 

high negative potentials  suggests  that  capacitance C'  is  approximately a  

diffuse capacitance with mobile impuri t ies  as given by Equation 75 ' .  

Note that  C'  should be plot ted vs v^(o),  the potential  just  inside the 

crystal  surface relat ive to the crystal  bulk,  rather  than potential  ij)  

The potential at which the minimum of capacitance C' occurs is about ij) 

= -240 mil l ivolts  for  electrodes #9 and #10 at  the various electrolyte 

concentrat ions.  The potential  a t  which the-minimum of capacitance C'  

occurs for  electrode #11 cannot be detected with accuracy but  is  in the 

range between 0 = -240 mil l ivolts  and i j )  = -280 mil l ivolts .  A 

comparison of the C'  and Cg values for  a  given electrode shows that  the 

former is  large compared to the lat ter .  

Since capacitance C'  changes rapidly around the zero point  of  charge 

so also must  the potential  V^(o).  This  is  also the case at  very high 

negative potentials  ( |^ |  > 300 mv).  The observed s l ight  variat ion of 

capacitance C'  between ^  = -100 mv and 0 = -300 mv indicates that  

potential  V^(o) does l ikewise in this  region.  

For s tudies of  the impedance of  sol id Ag cl  and sol id Ag Br see 

references 17 and 18 respectively.  
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Figure 16. Dependence of equivalent series capacitance of solid Agi on potential (relative 
to potential at zero point of charge) 
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Figure 17.  Dependence of  equivalent  series capacitance of sol id Agi on potential  (relat ive 
to potential  a t  zero point  of  charge) 
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Figure 18. Dependence of equivalent series capacitance of solid Agi on potential (relative 
to potential at zero point of charge) 
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sln>friary 

An impedance bridge was used to determine the equivalent  series 

capacitance '  Cy and resistance Ry for  the Agl-aqueous solut ion system. An 

Agi electrode in contact  with an aqueous potassium ni trate solut ion 

containing a very di lute concentrat ion of Ag"^.  and I"  ions served as the 

system. A cel l  potential  range of about  420 mil l ivolts  was used at  

concentrat ions of . IN,  .OIN, and .ODIN. The Gy and Ry values at  a  given 

potential  and electrolyte concentrat ion were determined in a frequency 

range from 256 cycles per  second to 9,168 cycles per  second.  Several  

electrodes of  varying Agi thickness were s tudied to check the consistency 

of  the results .  An electr ical  analog circuit  was proposed for  the inter­

face which was consistent  with known propert ies  of  this  interface and 

which adequately represented the dependence of  Cy and Ry on frequency and 

potential  over the ranges of  frequency and potential  s tudied.  

I t  has been shown that  the frequency dependences of  both Cy and Ry 

are due to distr ibuted capacitances in the pores of  Agi.  This  effect  can 

be described by tapered RC t ransmission l ines connected in paral lel .  The 

equivalent  capacitance and resistance of one l ine represents  the impedance 

in one pore.  The equivalent  capacitance Cp and resistance Rp of  the 

parallel transmission l ines is  in paral lel  with the differential  

capacitance CQ of the double layer associated with the f lat  port ion of 

the Agi.  The result ing impedance is  in series with both the series 

equivalent  capacitance C'  and resistance R'  of  sol id Agi and the solut ion 

resistance.  Capacitance C'  ar ises from space charges of  defects  in the 

Agi. 
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By set t ing the value of the Agi double layer capacity equal  to that  

for  the mercury-sodiuni  f luoride solut ion interface at  the zero point  of  

charge at  .OOIN solut ion the area of the f lat  port ion of the Agi 

electrode is  determined,  and hence the Agi double layer capacity at  any 

potential  and electrolyte concentrat ion.  This was the goal  of  our 

research.  We f ind that  the double capacity values agree very well  with 

those of Agar around the zero point  of  charge at  various electrolyte 

•concentrat ions.  Whereas his  values decrease s l ightly at  high negative 

potentials  we observe increased values in this  potential  range.  
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SUGGESTIONS FOR FUTURE work 

An invest igat ion may be undertaken to use various electrolytes so 

that  differences in the Agi double layer capacity can be determined.  

Such differences would occur in the Stern layer for  ions of  the same 

valence.  Such work has been done by J .  Lyklema (9)  by the t i t rat ion 

method.  Ke observed that  the double layer capacity varied somewhat in  

the negative potential  region for  various cat ions.  

An invest igat ion with the us"e of  an organic solvent  may be under­

taken.  The Stern capacity should change from that  with water  as  the 

solvent  due to differences in dielectr ic  constant .  The dielectr ic  

constant  in the Stern , layer has been est imated to range between 4 and'  10 

with water  as  the solvent  and hence a  drop by at  least  a  factor  of  8 from 

bulk condit ions.  

The effect  of  different  methods of  preparing the Agi electrode may 

also be s tudied.  

A s tudy using an electrolyte concentrat ion of IN should be t r ied.  

A s ignif icant  difference between those values and those at  .IN would 

indicate that  specif ic  adsorption occurs.  The very small  e lectrolyte 

resistance in this  case would also permit  a  more accurate measurement of  

the Agi resistance.  
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