IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1967

The differential capacity of the electrical double layer at the silver iodide-aqueous solution interface

David Morton Barshatky *Iowa State University*

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Physical Chemistry Commons</u>

Recommended Citation

Barshatky, David Morton, "The differential capacity of the electrical double layer at the silver iodide-aqueous solution interface " (1967). *Retrospective Theses and Dissertations.* 3146. https://lib.dr.iastate.edu/rtd/3146

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

This dissertation has been microfilmed exactly as received

67-8901

BARSHATKY, David Morton, 1939-THE DIFFERENTIAL CAPACITY OF THE ELECTRICAL DOUBLE LAYER AT THE SILVER IODIDE-AQUEOUS SOLUTION INTERFACE.

Iowa State University of Science and Technology, Ph.D., 1967 Chemistry, physical

University Microfilms, Inc., Ann Arbor, Michigan

THE DIFFERENTIAL CAPACITY OF THE ELECTRICAL DOUBLE LAYER AT THE SILVER IODIDE-AQUEOUS SOLUTION INTERFACE

by

David Morton Barshatky

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Physical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head'of Major Department

Signature was redacted for privacy.

Dean of Graduate College

Iowa State University Of Science and Technology Ames, Iowa

TABLE OF CONTENTS

	Page
INTRODUCTION	1
MATERIALS	9
Water	9
Chemicals	9
Inert Atmosphere	9
Silver Iodide Electrodes	9
APPARATUS	17
The Impedance Bridge Cell	17
Electronic Apparatus	19
THEORY	22
The Faradaic Impedance	25
The Pore Impedance	33
The Impedance of the Silver Iodide-Solution Interface	46
The Impedance of Solid Silver Iodide	47
The Impedance of the Silver Iodide-Solution System	50
EXPERIMENTAL RESULTS	52
DISCUSSION	73
The Silver Iodide Double Layer Capacity	74
The Resistivity of Silver Iodide	88
The Capacitance C' of Solid Silver Iodide	100
SUMMARY	107
SUGGESTIONS FOR FUTURE WORK	109
BIBLIOGRAPHY	110
ACKNOWLEDGEMENTS	111'

INTRODUCTION

During the last two decades there has been an extensive investigation of the properties of the electrical double layer occurring at charged interfaces. The origin of the double layer depends on whether the interface is polarizable or nonpolarizable.

Consider a metal-solution interface. Let a reference electrode be inserted in solution and let an electromotive force (e.m.f.) be applied between the metal and reference electrodes by use of a potentiometer. The potential range should be wide but limited to the extent that a negligible charge is transferred across the interface. Such an interface is said to be polarizable. Upon application of this e.m.f. a surplus (or deficit) of electrons occurs on the metal surface via delivery (or removal) of electrons by the potentiometer while a deficit (or surplus) of electrons occurs in the solution via oxidation (or reduction) of a particular ion. Then in simplified form the double layer at a polarizable interface consists of a layer of electronic charge on the metal surface, a charge distribution of ions containing a net charge equal (but opposite in sign) to that on the metal in the solution region adjacent to the metal, and a layer of solvent molecules between the metal and the ionic charge distribution. The mercury-solution interface best represents such a system.

Consider a reversible electrode-solution interface. This is illustrated by the silver iodide-solution interface. Some Ag^+ and I^- ions will adsorb on the AgI surface resulting in the establishment of a net charge on the surface and an equal but opposite charge in solution. Such an

interface is said to be nonpolarizable since a charge has been transferred across the interface. Note here that the charge and potential depend on the concentration of Ag^+ (or I⁻) in the solution bulk. Then in simplified form the double layer at a nonpolarizable interface such as the AgI-solution interface consists of a net ionic charge on the AgI surface, a charge distribution of ions containing a net charge equal (but opposite in sign) to that on the surface in the solution region adjacent to the AgI and a layer of solvent molecules between the AgI surface and the ionic charge distribution.

In general the above mentioned layer of solvent molecules is called the compact or Stern layer while the ionic charge distribution in the solution is called the diffuse or Gouy layer. The plane through the distance from the surface of closest approach of the electrical center of the ions in the diffuse layer is the boundary between the Stern and diffuse layers and is called the outer Helmholtz plane. This double layer model is called the Stern-Grahame model. When adsorption of ions occurs in the Stern layer the above simple model has to be modified. An ion without a solvent sheath on the side of the ion adjacent to the solid surface is said to be specifically adsorbed in the Stern layer. Significant specific adsorption is frequently encountered with anions but infrequently with cations; this reflects the greater ease of partial dehydration of the anions.

Let ψ_0 denote the relative potential at the surface (x = 0) and ψ_{δ} the relative potential at the outer Helmholtz plane (x = δ). The relative potential in the solution bulk is zero. Let σ_0 denote the charge density

on the solid surface. Suppose there is no specific adsorption. Then it can be seen that the Stern and diffuse layers behave as differential capacitors in series in which

$$L_{\mathcal{H}} = 1/C_{c} + 1/C_{\alpha}$$
(1)

where $C_{\rm c}$ is the Stern capacity, $C_{\rm g}$ is the diffuse capacity, and \varkappa the double layer capacity. We have

$$\chi = d\sigma_0 / d\psi_0 \tag{1'}$$

$$C_{c} = d\sigma_{o}/d(\psi_{o} - \psi_{\delta})$$
⁽²⁾

$$c_{g} = d\sigma_{o}/d \psi_{\delta}$$
(3)

In these formulae capacitances per unit area are considered in order to utilize parameters independent of surface area.

Expressions for the dependence of the charge density and differential capacity of the diffuse layer on the surface potential were derived by Gouy and Chapman (1909-13) by use of a Boltzman distribution of ions. Incorrectly they assumed the diffuse layer began at the surface (x = 0). The charge density σ_g in coulombs/cm² of the diffuse layer containing ions of the same valence is

$$\sigma_{\rm g} = -\left[\frac{1}{9 \times 10^{11}}\right]^{1/2} \left[\frac{2n_{\rm o}kT\epsilon}{\pi}\right]^{1/2} \qquad \sinh \frac{ze \ \psi_{\delta}}{2kT}$$

where n_0 is the number of ions per cm³ in the solution bulk, ϵ is the solvent dielectric constant, k is the Boltzmann constant in joules/deg

molecule, z is the ion valence, e is the electronic charge in coulombs and ψ_{δ} is in volts. By differentiation of σ_{g} with respect to ψ_{δ} the differential capacity C_{g} in farads/cm² of the diffuse layer is obtained.

$$C_{g} = \left[\frac{1}{9 \times 10^{11}}\right]^{1/2} \left[\frac{z^{2}e^{2}n_{o}\epsilon}{2\pi kT}\right]^{1/2} \cosh \frac{ze \psi_{\hat{o}}}{2kT}$$
(3')

It is seen that C_g is independent of the properties of the surface at the interface and is a minimum at the zero point of charge (zpc), that is at $\sigma_g = 0$.

$$C_{g} (min) = \left[\frac{1}{9 \times 10^{11}}\right]^{1/2} \left[\frac{z^{2}e^{2}n_{o}\epsilon}{2\pi kT}\right]^{1/2}$$
(3'')

In general the capacity C_p of a parallel plate condenser in farads/cm² is - expressed by

$$c_{p} = \frac{\epsilon_{p}}{4\pi \tau_{p}} \frac{1}{9 \times 10^{11}}$$

where τ_p is the distance between the plates in cm. Hence from Equation 3'' the characteristic thickness of the diffuse layer called the Debye length λ_D in cm is defined as

$$1/\lambda_{\rm D} = (9 \times 10^{11})^{1/2} \left[\frac{8 \pi z^2 e^2 n_0}{\epsilon \, \rm kT} \right]^{1/2}$$

It is also seen that C_g is very small for very dilute solutions near the zero point of charge,-and for sufficiently dilute solutions will be small compared to the Stern capacity. In this case Equation 1 shows that the double layer capacity will approximately equal the diffuse capacity.

In 1924 Stern (1) incorporated the charge free solvent layer in the double layer model in order to account for ionic dimensions. There is no simple dependence of the differential capacity of the Stern layer on potential. Grahame (2) employed his experimental values of the double layer capacity of the Hg-aqueous NaF solution interface and the Gouy-Chapman theory of the diffuse layer to calculate the Stern capacity at a given surface charge density from Equation 1. He found that the Stern capacity varied strongly with the surface charge and suggested that such a dependence resulted from the compression and dielectric saturation of the solvent molecules in the Stern layer by the high electric field emanating from the surface. The former causes a rise while the latter causes a drop in the Stern capacity. At any rate for concentrated solutions or at very high negative or positive potentials the diffuse capacity is large and in this case the double layer capacity will approximately equal the Stern capacity.

Briefly, the double layer model is modified as follows upon specific adsorption. Let σ_1 denote the charge density in the Stern layer due to specific adsorption.

Since

 $\psi_{0} = \psi_{0} - \psi_{\delta} + \psi_{\delta}$

then

Hence

$$\frac{1}{\chi} = \frac{1}{C_c} - \frac{1}{C_g} \frac{d\sigma_g}{d\sigma_o}$$

 $\frac{d \psi_{o}}{d\sigma_{o}} = \frac{d(\psi_{o} - \psi_{\delta})}{d\sigma_{o}} + \frac{d \psi_{d}}{d\sigma_{\sigma}} \frac{d\sigma_{g}}{d\sigma_{o}}$

we have $\sigma_0 = -(\sigma_1 + \sigma_g)$

Then differentiation with respect to σ_{o} yields

$$\frac{\mathrm{d}\sigma_{g}}{\mathrm{d}\sigma_{0}} = 1 \div \frac{\mathrm{d}\sigma_{1}}{\mathrm{d}\sigma_{0}}$$

Hence

•C

$$\frac{1}{\varkappa} = \frac{1}{C_c} + \frac{1}{C_g} \left(1 + \frac{d\sigma_1}{d\sigma_o}\right)$$
(1'')

It is observed that the double layer capacity \varkappa values for the Hgsolution interface rise in the potential region where specific adsorption occurs. From Equation 1'' this rise is caused by an increase in the Stern capacity C_c upon specific adsorption compared to that without such adsorption and by the change of adsorption with surface charge σ_{o} .

Since the double layer behaves as a differential capacity much information about the structure and properties of the double layer can be obtained by measuring \varkappa as a function of potential. Other approaches to the study of the double layer structure are illustrated, for example, by measurements of the surface tension γ at a Hg-solution interface as a function of potential and the measurement of the surface charge density σ at the AgI-solution interface as a function of potential. The surface tension γ is related to the surface charge density σ in the absence of specific adsorption by the Lippmann equation

$-d\gamma = \sigma dV$

where V is the applied e.m.f. Differentiation of the γ -V curve gives the σ -V curve which upon differentiation yields the χ -V curve. The above two methods were first used to elucidate double layer properties.

In 1935 Frumkin and Proskurnin (3) were the first to publish reliable

work on the direct measurement of the double layer differential capacity. They used an oscillographic technique with a low amplitude signal to study the Hg-solution interface. A low amplitude signal is required because X itself is a function of potential. Thereafter Grahame (4) improved the alternating current (a.c.) bridge technique and published extensive double layer capacity results for the Hg-solution interface. However, such methods may not be workable for reversible interfaces. When an a.c. signal is imposed across the reversible interface a concentration gradient of the potential determining ions is set up resulting in the diffusion of these ions back and forth from the solution to the solid surface which disrupts the double layer. The resistance of a reversible electrode is usually sufficiently high that the balance point in the a.c. bridge technique cannot be obtained with accuracy. Reversible electrodes are usually somewhat rough and this results in frequency-dependent data. Such results would have to be interpreted quantitatively. As a consequence no work on reversible electrodes via the a.c. bridge technique has been successful. The first problem may be overcome by using signals of sufficiently high frequency that the polarity of the signal changes sufficiently rapidly that the ions always reverse direction before reaching the interface. The second problem may be overcome by using a reversible electrode with a relatively high conductivity. At the same time it should have a relatively wide accessible potential range and be such that studies of its double layer properties occur in the literature. The third problem may be overcome by using a very rough, relatively smooth or porous electrode. In these cases the frequency dispersion can-

be quantitatively explained in terms of known quantities. With this in mind we applied the a.c. bridge technique to the AgI-aqueous solution interface to determine its differential double layer capacity as a function of potential and ionic strength. AgI has a relatively high conductivity for solids, has an accessible potential range of about 450 millivolts and double layer studies on the AgI-solution interface have been very extensive with work done by Van Laar (5), Mackor (6,7), Lyklema (8,9), Agar (10), and others.

The stability of all lyophobic colloids depends on the electrical repulsion between particles resulting from their surface charges partly screened by the diffuse double layer. Once the character of the double layer is thoroughly understood it is possible to calculate the rate of flocculation as a function of surface charge and electrolyte concentration. High precision measurements of double layer properties have so far only been available for the mercury-electrolytic solution interface, the high precision results from the use of alternating current bridge measurements in this system. In general lyophobic colloids depend for stability on ion adsorption, and in this respect the polarized mercury surface poorly represents them. Silver iodide forms excellent colloidal dispersions, and they have been widely studied. As pointed out, the silver iodidesolution interface is also a classical example of the reversible interface. It is for this reason that the development of methods for measuring electrical properties of this interface with high precision is of such fundamental importance.

MATERIALS

Water

All solutions were prepared from freshly distilled conductivity water. The conductivity water was prepared by use of a fused silica continuous double distillation column obtained from Engelhard Industries, Inc. Further details are described by Kelsh (11).

Chemicals

KNO₃ used as the electrolyte was recrystallized twice from water. AgNO₃ used as a titrant was reagent grade. KI used as a titrant and in preparing the AgI electrodes was recrystallized from water. AgI used to buffer the cell solution was prepared from KI and AgNO₃ solutions.

Inert Atmosphere

Tank nitrogen was used to flush the cell. It entered the cell through a glass filter stick which dispersed the gas in a stream of small bubbles and left the cell through a water bubbler.

Silver Iodide Electrodes

The AgI electrodes were prepared as follows. Silver wire #26 obtained from Sargent Co. was inserted through a hole in a 9 mm cork stopper which in turn had been inserted at one end of a 9 mm glass tubing. The silver wire protruded from both ends of the tube. A glue mixture of Araldite 502 Epoxy Resin (10 parts by weight) and Hardener 951 (1 part by weight) was then used to seal carefully the end of the tube containing the cork without contaminating the exposed Ag. A schematic diagram of the electrode is shown in Figure 1.

The glue components were obtained from CIBA Products Company, Fair Lawn, New Jersey. The mixture gels in about 50 minutes at 25°C and is then cured for 3 days.

The exposed length and radius of the silver wire were measured with a measuring microscope. The silver electrode was then partly immersed in a .1 N KI solution along with a Pt electrode. The Ag electrode was connected to the positive terminal of a battery while the Pt electrode was connected to the negative terminal. An AgI deposit was then formed on the Ag electrode by electrolysis, and its thickness was estimated from the Faraday Law of electrolysis. Thus

$$m = \frac{E_{w}It}{F}$$

where m is the mass deposited on the electrode, E_w is the equivalent weight of the substance formed, I is the current through the electrode and t is the time of electrolysis. Since the electrode is cylindrical the volume V_e of AgI is expressed by

$$V_e = \pi dh \tau_e$$

where d is the diameter of the cylinder, h is the length, and $\tau_{\rm e}$ is the thickness of the AgI.

Then the mass m of AgI is

Figure 1. AgI electrode schematic

$$m = \pi dh \tau_e \rho_e$$

where ρ_e is the density of AgI.

Hence thickness $au_{_{
m P}}$ is expressed by

$$\tau_e = \frac{E_w Ic}{\pi F dh \rho_e}$$

Using $E_w = 234.8$ grams/equivalent, $\rho_e = 5.67$ grams/cm³, F = 9.650 x 10⁴ coulombs/equivalent we get

$$\tau_e = \frac{1.37 \times 10^{-4} \text{ It}}{\text{dh}}$$

The area Ae of the AgI electrode can be expressed by

$$Ae = \pi (dh + \frac{d^2}{4})$$

Table 1 lists the geometrical characteristics of the various electrodes investigated.

The experimental cell consists of an AgI and a lN calomel electrode in contact with an aqueous KNO_3 solution containing very dilute concentrations of Ag⁺ and I⁻ ions. The cell can be written as

 $KNO_{3}(C_{e})$ $Hg \mid Hg_{2}Cl_{2}(s) \mid KCl (1N) _AgNO_{3}(C_{Ag}+) \mid AgI(s) \mid Ag$ $KI(C_{T}-)$

where C_e is the concentration of the electrolyte KNO₃, C_{Ag}^+ is the concentration of Ag⁺ and C_{I^-} is the concentration of I⁻. The liquid junction potential remains nearly constant because the KCl concentration in the salt bridge is large compared to other concentrations at the

Electrode	d x 10 ²	$h \times 10^{1}$	$\tau_e \times 10^4$	Ae x 10^2
# 9	4.15	2.64	3.4	3.58
#10	4.16	. 2.63	4.7	3.57
#11	4.08	1.96	0.44	2.64

Table 1. The diameter d in cm, length h in cm, thickness of ${\rm AgI}\tau_{\rm e}$ in cm and area Ae in cm^2 for the various AgI electrodes

junction. Chloride ion contamination of the solution was minimized by making the contact between the salt bridge and the solution through a hole of such small radius that a negligible quantity/hr of Cl⁻ entered the solution and by placing this electrode in solution only during the small time periods when potentials were actually being measured. New solutions were used for each set of measurements. The half cell reaction in excess of Ag^+ is:

The cell potential E_{c} in excess Ag^{+} is expressed by

$$E_c = E_{cal} + E_{Ag}^{o} + Ag + \frac{RT}{F} \ln a_{Ag} + \frac{RT}{F}$$

where a_{Ag^+} is the activity of Ag^+ ion.

$$E_c = 518 + \frac{RT}{F} \ln \gamma_{Ag}^+ + \frac{RT}{F} \ln C_{Ag}^+$$

where γ_{Ag^+} is the activity coefficient of Ag^+ ion. We define

$$E_{Ag}^{o'} = 518 + \frac{RT}{F} \ln \gamma_{Ag}^{+}$$

Then

$$E_c = E_{Ag}^{o'} + \frac{RT}{F} \ln C_{Ag}^{+}$$

The cell reaction in excess I is:

$$\begin{array}{rcl} Hg + Cl^{-}(1N) & \longrightarrow & 1/2 & Hg_2Cl_2(s) + e^- & , & E_{cal} = -281 & mv \\ AgI(s) + e^- & \longrightarrow & Ag + I^- & , & E^0 = -152 & mv \\ \hline & & & & \\ AgI(s) + Hg + Cl^{-}(1N) & \longrightarrow & Ag + I^- + 1/2 & Hg_2Cl_2(s) \end{array}$$

The cell potential E_c in excess I⁻ is expressed by

$$E_c = E_{cal} + E_{AgI,Ag}^o - \frac{RT}{F} \ln a_{I}$$

where a_{I^-} is the activity of I^- ion.

Then
$$E_c = -433 - \frac{RT}{F} \ln \gamma_{I} - \frac{RT}{F} \ln C_{I}$$

where γ_{I^-} is the activity coefficient of I⁻ ion. We define

$$E_{I}^{o'} = -433 - \frac{RT}{F} \ln \gamma_{I}$$

Then $E_c = E_I^{o'} - \frac{RT}{F} \ln C_{I}$ -

(5)

(4)

Note that γ_{Ag^+} and γ_{I^-} depend only on the ionic strength of the electrolyte.

We find an expression for pK_{sp} for AgI as follows: From Equations 4 and 5

$$E_{Ag}^{O'} - E_{I}^{O'} = -\frac{RT}{F} \ln (C_{I} - C_{Ag})$$

Since $K_{sp} = C_{I} - C_{Ag}$

then

$$pK_{sp} = -\log K_{sp} = \frac{F(E_{Ag}^{o'} - E_{I}^{o'})}{2.303 \text{ RT}}$$
(6)

The relative potential ψ is defined as

$$\psi = E_{c} - E_{c}(zpc) \tag{7}$$

where $E_c(zpc)$ denotes the cell potential at the zero point of charge, that is the cell potential at which equal amounts of Ag^+ and I^- have adsorbed on the AgI surface to give a zero net charge. In plotting double layer capacity curves the potential ψ is used as the abscissa. Actually the surface potential ψ_o should be used as the abscissa but is not accessible experimentally. ψ_o is a component of ψ , and under certain conditions they are equal. This point will be discussed later. Let $C^o_{Ag^+}$ denote the concentration of Ag^+ at the zero point of charge. Then from Equation 4

$$\psi = \frac{RT}{F} \ln \frac{C_{Ag}}{C_{Ag}}$$

(7')

Hence ψ is positive when an excess Ag⁺ has adsorbed on the AgI surface and negative for an excess of I⁻. Van Laar (5) has done the most extensive and reliable study of the zero point of charge on AgI, and we shall take his value, expressed as pAg = 5.45 at the zero point of charge in dilute KNO₃ solution. We will assume there is no shift in the zero point of charge with increasing ionic strength for those we use.

Then

 $C_{Ag^+}^{o} = 3.55 \times 10^{-6}$ moles/liter

The standard potentials $E_{Ag}^{o'}$ and $E_{I}^{o'}$ were determined at a given ionic strength by measuring the potential E_{c} of the above cell at various known concentrations of Ag⁺ and I⁻ by use of a Beckman pH meter. Equation 4 is used to calculate $E_{Ag}^{o'}$ and Equation 5 is used to calculate $E_{I}^{o'}$. Once these values are known we can calculate unknown concentrations of Ag⁺ and I⁻ at a given cell potential. The rational potential ψ at a given cell potential can also be determined. The values of $E_{Ag}^{o'}$, $E_{I}^{o'}$ and p_{Sp}^{X} for representative electrodes are listed in Table 2. They are in accord with the values determined by other workers.

Table 2. The standard cell potentials $E_{Ag}^{o'}$ and $E_{I}^{o'}$ in millivolts and pK_{sp} for various AgI electrodes

Ionic strength	Electrode	E ^{o'}	EI	pK _{sp}
.1020	# 9	515	- 412	15.67
	#10	513 -	- 416	15.70
.01020	# 9	526	- 410	15.82
	#10	523	- 415	15.86
.001020	# 9	529	- 411	15.89
	#10	525	- 415	15.89

APPARATUS

The Impedance Bridge Cell

The container for the solution was formed from a 55/60 Pyrex double walled standard taper, outer. The ring seal at the bottom completed a thermostatting jacket through which water from a constant temperature bath could be circulated. A glass tube, 2 cm in diameter but tapered at the bottom was attached to an outlet at one side of the container. This tube was used to contain the reference electrode.

A 55/60 Pyrex standard taper, inner, was attached to the top of the above container. This served as a support for the various components of the cell. A platinum gauze electrode was connected to the support by a platinum wire sealed through a glass sheath, which in turn was ring-sealed to the support. The a.c. signal was applied between this electrode and the AgI electrode. A gas dispersing tube was also connected to the support by a ring seal. A Teflon plug stopcock directed the incoming gas through this tube when closed.

A 12/30 Pyrex standard taper, outer, was attached to the top of the cell support. The AgI electrode was inserted through a Teflon plug, the outside of which had been machined to fit tightly the 12/30 Pyrex standard taper, outer.

A schematic diagram of the cell is shown in Figure 2.

р1 СО

Electronic Apparatus

The impedance bridge was constructed around a Leeds and Northrup Co. shielded ratio box, catalog number 1553. The ratio box contains ratio arms for a one to one impedance bridge, i.e., 2 adjacent arms of the bridge are resistors of equal magnitude. It also has a shielded stepdown input transformer and a network for use in balancing the bridge. These are-all enclosed in a metal case which acts as a shield. Various external pieces of equipment were connected to shielded binding posts on the box.

The input signal to the transformer in the ratio box was supplied by a Hewlett Packard Model 200 CD wide range oscillator.

The measuring arm of the bridge consisted of a Freed Transformer Co. Model 1350 decade capacitor and a non-inductively wound Leeds and Northrup Co. decade resistance, catalog number 4764, in series connection. The decade capacitor consisted of 4 decades in units of .001 μ f, .01 μ f and 1 μ f, and a continuously variable air capacitor with a scale calibrated in units of 10 μ µf with a range up to a maximum of .001 μ f. The decade resistance consisted of 6 decades in units of .01, .1, 1, 10, 100, and 1000 chms.

The output signal from the bridge needed amplification before it could be displayed on an oscilloscope and this was first furnished by a Hewlett Packard Model 450A wide band amplifier operating at a gain of 100 to 1. This signal was in turn amplified by a twin-tee narrow band amplifier designed and constructed in this laboratory.

Pairs of tees used in the measurements were constructed for use at

nominal frequencies 250, 500, 750, 1000, 2500, 5000, and 10,000 cycles per second. The amplified signal from the twin tee was put into the Y input of the oscilloscope and produced the Y displacement on the screen. A Dumont Type 304-H cathode ray oscilloscope was used.

In order to gain additional sensitivity in the measurements a phase sensitive technique was used. A second Hewlett Packard Model 450A wide band amplifier operating at a gain of 100 to 1 had its input connected to the bridge and its output to the X input of the oscilloscope so the input signal to the bridge could be amplified and used to produce the X displacement on the oscilloscope screen. These X and Y inputs produced a Lissajous figure on the screen. A horizontal straight line indicated the output signal from the bridge was zero and the bridge balanced.

A second pair of series elements similar to the above decade capacitor and decade resistance were then substituted for the cell in the bridge. The bridge was then balanced again by adjusting this second pair of elements. Such a calibration procedure is needed in order to eliminate effects due to asymmetries in the bridge network and in the electrical leads. By using identical shielded electrical leads for connecting both the cell and cell analog to the bridge terminal the impedance of the cell and the cell analog became the same.

A diagram of the bridge is shown in Figure 3.

Figure 3. Impedance bridge schematic

THEORY

Consider an AgI-aqueous solution interface with an a.c. signal applied across it. The AgI surface is somewhat porous so it will consist of porous and flat, smooth parts as illustrated in Figure 4. Each pore filled with solution has an impedance Z_A which we assume is equivalent to a series combination of a capacitance C_A and resistance R_A . The impedance Z_p of all pores is the resultant of the pore impedances connected in parallel. Hence it can be represented as a series combination of a capacitance R_p . The impedance at the flat part of the interface consists of the double layer capacitance C_D in parallel with its associated Faredaic impedance Z_p . The latter consists of a series combination of capacitance C_p and resistance R_p . The impedance Z_p connected in parallel with the flat impedance. The circuit for the AgI interface as described above is illustrated in Figure 5. Hence impedance Z_s is given by

$$\frac{1}{Z_{\rm S}} = \frac{1}{Z_{\rm P}} \div i \,\omega C_{\rm D} \div \frac{1}{Z_{\rm F}} \tag{8}$$

where

$$Z_{\rm P} = R_{\rm P} - \frac{i}{\omega C_{\rm P}} \tag{8'}$$

$$Z_{\rm F} = R_{\rm F} - \frac{i}{\omega c_{\rm F}} \tag{8''}$$

In the following paragraphs expressions for $C_{\rm P},~R_{\rm P},~C_{\rm F},$ and $R_{\rm F}$ will be derived.

Ag

SOLUTION

c lug tront

. .

· · ·

P

The Faradaic Impedance

The Faradaic impedance at the AgI interface is explained as follows. The potential difference between the AgI and platinum electrodes in contact via solution containing an excess of Ag⁺ ions of concentration C_o in moles/cm³ is

$$E_{C}' = E_{Ag}^{O''} \div \frac{RT}{F} \ln C_{O}$$

The A.C. signal V across these electrodes changes the potential difference to $E_{\rm C}^{+1}$ such that

$$E_C'' = E_C' \div V$$

This means the concentration of Ag^{+} ions near the AgI surface must change accordingly. Hence a concentration gradient of Ag^{+} ions is set up. As a result the Ag^{+} ions diffuse to and from the AgI surface according to the polarity of the signal. Let C(x,t) denote the concentration of Ag^{+} ions at the distance x from the AgI surface at time t. Then

$$E_{C}'' = E_{Ag}^{O''} + \frac{RT}{F} \ln C(o,t)$$

Using the above equations signal V is expressed as

$$V = \frac{RT}{F} \ln \frac{C(o,t)}{C_o}$$
(9)

Signal V can also be expressed as

$$V = a \sin \omega t$$

(10)

where a is the amplitude of the signal. Amplitude a is experimentally made small compared to a given cell potential. Under this condition

 $\ln \frac{C(o,t)}{C_0} = \ln \left[1 - \frac{C_0 - C(o,t)}{C_0}\right]$

$$\frac{C_{0} - C(0,t)}{C_{0}} < < 1$$

Since

then to a good approximation

$$\ln \frac{C(o,t)}{C_o} = \frac{C(o,t) - C_o}{C_o}$$

then

$$V = \frac{RT}{F} \frac{C(o,t) - C_o}{C_o}$$
(9')

The diffusion of Ag⁺ ions produces a current I_F called the Faradaic current. Let $Z_F = V/I_F$; then Z_F is dimensionally an impedance, and it is called the Faradaic impedance. We let the Faradaic impedance be equivalent to a series combination of a capacitance and resistance called the Faradaic capacitance and Faradaic resistance respectively.

We proceed to find an expression for the Faradaic current density I_f and subsequently expressions for the Faradaic capacitance C_F and resistance R_F resulting from planar diffusion. The Faradaic current density I_f resulting from planar diffusion in coulombs/sec cm² is given by

$$I_{f} = FDC_{x}(o,t), t > 0$$
(11)

where

$$C_{x}(o,t) = \left[\frac{\partial C(x,t)}{\partial x}\right]_{x = 0}$$

and D is the diffusion constant of Ag⁺ ions in cm²/sec. Using Fick's second law of diffusion we have

$$D C_{xx}(x,t) = C_t(x,t) , x > 0, t > 0$$
(12)

with the conditions

$$C(x,o) = C_o \tag{13}$$

$$\lim C(x,t) = C_0$$
(14)

From Equations 9' and 10 we find

x ~> ∞

$$C(o,t) - C_o = \frac{aFC_o}{RT} \sin \omega t$$
 (15)

It will be convenient to transform these equations as follows.

Let
$$U(x,t) = C(x,t) - C_0$$

then Equations 11-15 become

$$I_{f} = F D U_{x}(o,t) , t > 0$$
 (11')

$$U_{XX}(x,t) = U_{t}(x,t) , x > 0, t > 0$$
 (12')

$$U(x,o) = 0$$
 (13')

$$\lim_{x \to \infty} U(x,t) = 0 \tag{14'}$$

$$U(o,t) = \frac{aFC_o}{RT} \sin \omega t$$
 (15')

Equations 11', 12', 14', and 15' upon Laplace Transformation yield

$$i_{f} = F D \overline{u}_{x}(o,s)$$
(11'')

$$D \overline{u}_{XX}(x,s) = s \overline{u}(x,s) - U(x,o)$$
(12'')

$$\lim \overline{u}(\mathbf{x}, \mathbf{s}) = 0 \tag{14^{11}}$$

$$\overline{u}(o,s) = \frac{aFC_o}{RT} \frac{\omega}{s^2 + \omega^2}$$
(15'')

Inserting Equation 13' in Equation 12'' yields

$$D \overline{u}_{XX}(x,s) - s \overline{u}(x,s) = 0$$

The solution to the above equation satisfying Equation 14'' is

$$\overline{u}(x,s) = A' \exp(-\sqrt{s/D} x)$$

In order to satisfy Equation 15'' we must have

$$A' = \frac{aFC_0}{RT} \frac{\omega}{s^2 \div \omega^2}$$

 $u(x,s) = \frac{aFC_0}{RT} \frac{\omega}{s^2 \div \omega^2} \exp(-\sqrt{s/D} x)$

Hence

Differentiation of the above equation yields

$$u_{x}(x,s) = -\frac{aFC_{0}}{RT} \frac{\omega}{s^{2} + \omega^{2}} \exp(-\sqrt{s/D} x)$$
$$u_{x}(o,s) = -\frac{aFC_{0}}{RT} \frac{\omega}{s^{2} + \omega^{2}} \sqrt{s/D}$$
(16)

then

Inserting Equation 16 into Equation 11" yields

$$i_{f} = \frac{F^{2}a C_{0}D^{1/2}}{RT} \frac{s}{s^{1/2}(s^{2} \div \omega^{2})}$$

We now take the inverse transform of the above equation.

Let
$$f(s) = \frac{1}{s^{1/2}}$$
, $g(s) = \frac{s}{s^2 \div \omega^2}$

then

$$F(t) = \frac{1}{\sqrt{\pi t}}$$
, $G(t) = \cos \omega t$

$$F(\tau) = \frac{1}{\sqrt{\pi\tau}} , \qquad G(t-\tau) = \cos \omega (t-\tau)$$

Hence

$$I_{f} = \frac{F^{2} a C_{o} D^{1/2} \omega}{RT} \int_{0}^{t} F(\tau) G(t-\tau) d\tau$$
$$I_{f} = \frac{F^{2} a C_{o} D^{1/2} \omega}{RT} \int_{0}^{t} \frac{\cos \omega (t-\tau)}{\sqrt{\pi\tau}} d\tau$$

Since

 $\cos \omega (t - \tau) = \cos \omega t \cos \omega \tau + \sin \omega t \sin \omega \tau$

then

$$I_{f} = \frac{F^{2}aC_{o}D^{1/2}\omega}{RT\pi^{1/2}} \left[\cos \omega t \int_{0}^{t} \frac{\cos \omega \tau}{\sqrt{\tau}} d\tau + \sin \omega t \int_{0}^{t} \frac{\sin \omega \tau}{\sqrt{\tau}} d\tau\right]$$

Let $y = (\omega \tau)^{1/2}$

then
$$d\tau = \frac{2\tau^{1/2}}{\omega^{1/2}} dy$$

At $\tau = 0$, y = 0 and at $\tau = t$, $y = \sqrt{\omega t}$

Using the above substitutions we find

$$I_{f} = \frac{2F^{2}aC_{o}D^{1/2}\omega^{1/2}}{RT\pi^{1/2}} \left[\cos \omega t \int_{0}^{\sqrt{\omega t}} \cos y^{2} dy + \sin \omega t \int_{0}^{\sqrt{\omega t}} \sin y^{2} dy\right]$$

We consider the steady state condition where $\omega t \longrightarrow \infty$ as the upper limit in the above integrals.

Since

$$\int_{0}^{\infty} \cos y^{2} dy = \frac{1}{2}\sqrt{\pi/2} = \int_{0}^{\infty} \sin y^{2} dy$$

Then

$$I_{f} = \frac{F^{2}aC_{o}}{RT} \left[\frac{D\omega}{2}\right]^{1/2} \left[\cos \omega t + \sin \omega t\right]$$
(17)

We find another expression for the Faradaic current density I_f as follows. The Faradaic capacity C_f in farads/cm² and Faradaic resistivity R_f in ohm cm² are a series combination through which current density I_f flows. The potential drop across this combination is V. Then

$$dV = R_{f} dI_{f} + \frac{dQ_{f}}{C_{f}}$$
(18)

where

$$dQ_f = I_f dt$$

We have used a differential equation above because we are considering Cr as a differential capacity. Equation 18 becomes upon use of Equation 10

$$\alpha \omega \cos \omega t = R_{f} \frac{dI_{f}}{dt} + \frac{I_{f}}{C_{f}}$$
(18')

Let $Q_f = \alpha \sin \omega t + \beta \cos \omega t$

nen
$$I_{f} = \frac{dQ_{f}}{dt} = \alpha \omega \cos \omega t - \beta \omega \sin \omega t$$
 (19)

$$\frac{dI_f}{dt} = -\alpha \,\omega^2 \sin \,\omega t - \beta \,\omega^2 \cos \,\omega t \tag{20}$$

Inserting Equations 19 and 20 in Equation 18 yields

$$\alpha \, \omega \cos \, \omega t = \left[- \, \mathbb{R}_{f} \, \alpha \, \omega \, - \, \frac{\beta}{C_{f}} \right] \omega \sin \, \omega t + \left[- \, \mathbb{R}_{f} \, \beta \, \omega \, \div \, \frac{\alpha}{C_{f}} \right] \, \omega^{\cos} \, \omega^{t}$$

Upon equating coefficients in the above equation we get

$$\alpha = \alpha C_{f} + R_{f}C_{f}\beta\omega$$
$$\beta = - R_{f}C_{f}\alpha\omega$$

Hence

$$\alpha = \frac{aC_{f}}{1 + (\omega C_{f}R_{f})^{2}}$$

$$\beta = \frac{- \omega C_{f}^{2} R_{f}^{2}}{1 + (\omega C_{f} R_{f})^{2}}$$

(22)

(21)

 \mathbf{Th}

Inserting Equations 21 and 22 into Equation 19 yields

$$I_{f} = \frac{a \omega C_{f}}{1 + (\omega C_{f} R_{f})^{2}} \left[\cos \omega t + \omega C_{f} R_{f} \sin \omega t \right]$$
(19')

Upon equating coefficients of Equations 17 and 19' we get

$$\omega c_{f} R_{f} = 1$$

$$\frac{c_{f}}{1 \div (\omega c_{f} R_{f})^{2}} = \frac{F^{2} c_{o}}{RT} \left[\frac{D}{2 \omega} \right]^{1/2}$$

Hence

$$C_{f} = \frac{P^{2}C_{o}}{KT} \left[\frac{2D}{\omega}\right]^{1/2} = K_{f}/\omega^{1/2}$$
(23)

$$R_{f} = \frac{RT}{F^{2}C_{0}} \left[\frac{1}{2D\omega} \right]^{1/2} = \frac{1}{K_{f}\omega^{1/2}}$$
(24)

in which we have let

$$K_{f} = \frac{F^{2}C_{o}}{RT} (2D)^{1/2}$$
 (25)

Let $A_{\rm f}$ denote the flat area of the AgI electrode. Then the Faradaic capacitance $C_{\rm F}$ and resistance $R_{\rm F}$ can be expressed by

$$C_{\rm F} = A_{\rm f} C_{\rm f} \tag{26}$$

$$R_{\rm F} = R_{\rm f} / A_{\rm f}$$
 (27)

Hence

$$C_{\rm F} = A_{\rm f} K_{\rm f} / \omega^{1/2} = K_{\rm F} / \omega^{1/2}$$
 (26')

$$R_{F} = \frac{1}{A_{f}K_{f}\omega^{1/2}} = \frac{1}{K_{F}\omega^{1/2}}$$
(27')
in which we have let

$$K_{\mathcal{P}} = A_{\mathcal{f}} K_{\mathcal{f}}$$
 (28)

The constant K_f for the diffusion of Ag^+ ions at 25°C is calculated from Equation 25 to be

$$K_{f} = 18.4 \overline{C_{o}}$$
(25')

where $\overline{C_0}$ is the concentration of Ag⁺ ions in moles/liter. A diffusion constant of 1.20 x 10⁻⁵ cm²/sec was used for Ag⁺ ions. Hence K_F can be calculated once the value of area A_F is determined.

For the case where the solution contains an excess of I⁻ ions the same equations for C_F and R_F are derived.

The Pore Impedance

Using some assumptions the a.c. behavior of a pore can be represented by a uniform RC transmission line. When a small amplitude alternating voltage is used, as here, a simple derivation of the impedance of the line is possible. This has been worked out by R. De Levie (12, 13). For clarity the derivation is shown here. It is assumed that the pores are circular cylinders of uniform diameter with semi-infinite length, homogeneously filled with solution, of uniformly distributed capacitance and resistance per unit length, and without cross links. It is also assumed that any curvature of the equipotential surfaces within the pores may be neglected and that either the electrode resistance or electrolyte resistance predominates.

A diagram of a section of the uniform RC transmission line

representing the circuit of a pore is shown in Figure 5 where e(x,t) denotes the a.c. potential at distance x along the central axis of the pore at time t, i(x,t) denotes the current at distance x at time t, and \overline{R} denotes the resistance of the AgI pore wall per unit pore length. In our case the electrolyte resistance is negligible compared to the AgI resistance at the ionic strengths used. Hence the electrolyte resistance has a negligible effect in the pore and is represented as the upper line in the transmission line. Impedance Z denotes the impedance of the solution - AgI interface per unit pore length. Hence Z is the impedance due to the double layer capacitance per unit pore length, \overline{C}_{p} . The boundary conditions are

$$e(o,t) = a \sin \omega t$$
(29)
$$e(\infty,t) = 0$$
(30)

From Figure 5 we have

$$de = - iRdx$$
$$e = - di Z/dx$$

then

$$\frac{\partial e}{\partial x} \div i \overline{R} = 0$$
(31)
$$\frac{\partial i}{\partial x} \div \frac{e}{Z} = 0$$
(32)

then

$$\frac{\partial^2 e}{\partial x^2} \div \overline{R} \frac{\partial i}{\partial x} = 0$$
(33)
$$\frac{\partial^2 i}{\partial x^2} \div \frac{1}{Z} \frac{\partial e}{\partial x} = 0$$
(34)

đ

From Equations 32 and 33 we get

$$\frac{\delta \frac{2}{2}}{\frac{2}{2}} - \frac{\delta}{2} \frac{1}{2} = 0$$

The solution to this equation satisfying Equation 30 is

 $e(x) = A^{11} \exp(-\sqrt{R/Z} x)$

In order to satisfy Equation 29 we must have

$$A^{**} = a \sin \omega t$$

Hance

$$e(x) = a \sin \omega t \exp \left(-\sqrt{R/Z} x\right)$$
 (35)

Differentiation of Equation 35 yields

$$\frac{\partial e}{\partial x} = -\sqrt{\overline{R}/2}$$
 a sin $\omega t \exp(-\sqrt{\overline{R}/2} x)$ (36)

From Equations 31 and 36 we get

$$i(x) = \frac{1}{RZ} a \sin \omega t \exp(-\sqrt{R/Z} x) \quad (37)$$

The impedance $\boldsymbol{Z}_{\boldsymbol{A}}$ of the transmission line is

$$Z_{A} = \frac{a(x)}{i(x)}$$

Hence dividing Equation 35 by Equation 37 we obtain

$$Z_{A} = \sqrt{\overline{R}Z}$$
 (38)

We proceed to find an expression for impedance Z. From Figure 6 we

37

have

$$\frac{1}{2} = i\omega \overline{c_p} + \frac{\omega \overline{c_r}}{\omega \overline{c_r R_{r_r}} - i}$$

where \overline{C}_{f} is the Faradaic capacitance per unit pore length in farads/om and \overline{R}_{f} is the Faradaic resistance per unit pore length in ohm cm. We need to find expressions for \overline{C}_{f} and \overline{R}_{g} .

The diffusion of species i in a circular cylindrical pore is considered to be just radial. That is species i diffuses in the region $0 \le r \le r_0$ towards and from the electrode surface at $r = r_0$, where r is the distance from the axis of the cylinder and r_0 is the radius of the pore. The Faradaic current density resulting from this diffusion is given by

$$I_{f} = FD\left[\frac{\partial C(r,t)}{\partial r}\right] , t > 0$$

$$r = r_{0}$$

where C(r,t) is the concentration of the diffusing ion at distance r at time t. According to the derivation worked out by R. De Levie (12) for the steady state condition the Faradaic current density I_f is expressed by

 $I_{f} = \frac{F^{2}aC_{o}}{RT} \mu \sqrt{\omega D} [\sin \psi \cos \omega z + \cos \psi \sin \omega z]$ (40)

where μ and ψ are functions of λ defined by

$$\lambda = r_0 \left[\frac{\omega}{D} \right]^{1/2} \tag{41}$$

We know the Faradaic current density can also be expressed by

(39)

$$I_{f} = \frac{\omega C_{f}}{1 + R_{f}^{2} C_{f}^{2} \omega^{2}} [\cos \omega t + \omega R_{f} C_{f} \sin \omega t]$$
(19')

Upon equating coefficients of Equations 40 and 19' we get

$$\frac{F^{2}C_{o}}{RT} \mu \sqrt{\omega D} \sin \psi = \frac{\omega C_{f}}{1 + (R_{f}C_{f}\omega)^{2}}$$
(42)

$$\frac{F^{2}C_{0}}{RT} \mu \sqrt{\omega D} \cos \psi = \frac{\omega C_{f}(\omega R_{f}C_{f})}{1 + (R_{f}C_{f}\omega)^{2}}$$
(43)

Dividing Equation 43 by Equation 42 yields

$$\frac{\cos\psi}{\sin\psi} = \omega R_{f}C_{f}$$
(44)

From Equation 44 and 42 we get

$$C_{f} = \frac{F^{2}C_{o}\mu}{RT \sin\psi} \sqrt{D/\omega}$$
(45)

From Equations 44 and 45 we get

$$R_{f} = \frac{RT \cos \psi}{F^{2}C_{o}\mu\sqrt{D\omega}}$$
(46)

Since the pores are cylindrical with radius r_{0} then the area \overline{A}_{p} of a pore of unit length is

$$\bar{A}_{p} = 2\pi r_{o}$$

Then the Faradaic capacitance per unit pore length and resistance per unit pore length can be expressed by

$$\overline{C}_{F} = 2\pi r_0 C_f \qquad (47)$$

$$\overline{R}_{\rm F} = R_{\rm F}/2\pi r_{\rm o} \tag{48}$$

Hence

$$\overline{C}_{F} = \frac{2\pi r_{o} \overline{F}^{2} C_{o} \mu}{RT \sin \psi} \sqrt{D/\omega} = \frac{\overline{K}_{p} \mu}{\sin \psi \omega^{1/2}}$$
(47')

$$\overline{R}_{\rm F} = \frac{{\rm RT}\,\cos\psi}{2\pi r_{\rm o}{\rm F}^2 {\rm C}_{\rm o}\mu\sqrt{{\rm D}\omega}} = \frac{\cos\psi}{\overline{{\rm K}_{\rm F}}\mu\,\omega^{1/2}}$$
(48')

in which we have let

$$\overline{K}_{F} = \frac{2\pi r_{o} F^{2} C_{c} D^{1/2}}{RT}$$
(49)

Inserting Equations 47' and 48' into Equation 39 yields

$$\frac{1}{Z} = i \omega \overline{C_D} + \frac{\overline{K_F \mu} \sqrt{\omega}}{\cos \psi - i \sin \psi}$$

Upon rationalizing the second term we get

$$\frac{1}{Z} = \overline{K}_{\overline{z}} \mu \sqrt{\omega} \cos \psi + i(\omega \overline{C}_{D} + \overline{K}_{\overline{z}} \mu \sqrt{\omega} \sin \psi)$$
 (50)

Hence

$$\frac{1}{RZ} = \frac{R_{\underline{x}}\mu\sqrt{\omega} \cos\psi}{R} + \frac{i}{R} (\omega\overline{C}_{\underline{y}} + \overline{K}_{\underline{y}}\mu\sqrt{\omega} \sin\psi) = a + bi$$
(51)

in which we have let

$$a = \frac{\overline{K_{T}} \mu \sqrt{\omega} \cos \psi}{\overline{R}}$$
 (52)

$$b = \frac{\omega \overline{c}_{\rm D} + \overline{x}_{\rm p} \sqrt{\omega} \sin \psi}{\overline{3}}$$
(53)

Impedance $Z_{\rm A}$ can be considered equivalent to a series combination of a resistance $R_{\rm A}$ and capacitance $C_{\rm A}$. That is

$$Z_{\underline{A}} = R_{\underline{A}} - \frac{1}{\omega C_{\underline{A}}} = \underline{Z}^{\dagger} - \underline{Z}^{\dagger \dagger} \mathbf{i}$$
(54)

We can find an expression for $R_{\rm A}$ and $C_{\rm A}$ as follows. From Equations 38, 51 and 54 we have

$$(Z' - Z''i)^2 = \frac{1}{a+bi}$$

chen

$$Z^{+2} - 2Z^{+}Z^{++}i - Z^{++2} = \frac{a - bi}{a^{2} + b^{2}}$$

Upon equating real and imaginary parts in the above equation we get

$$Z^{\prime 2} - Z^{\prime \prime 2} = \frac{a}{a^2 + b^2}$$
(55)

$$Z' = \frac{b}{(a^2 \div b^2) 2Z''}$$
(56)

Using Equation 56 in Equation 55 yields

$$Z^{*} \stackrel{4}{\to} \frac{aZ^{*} \stackrel{2}{\to} \frac{2}{a^2 + b^2} - \frac{b^2}{4(a^2 + b^2)} = 0$$

The solution to this equation is

$$2^{1+2} = \frac{(a^2 + b^2)^{1/2} - a}{2(a^2 + b^2)}$$

Then

$$\frac{1}{\omega c_{A}} = 2^{11} = \left[\frac{(a^{2} + b^{2})^{1/2} + a}{2(a^{2} + b^{2})} \right]^{1/2}$$

Using Equation 57 in Equation 55 yields

$$Z^{*2} = \frac{(a^2 + b^2)^{1/2} + a}{2(a^2 + b^2)}$$

Then

$$R_{A} = Z' = \left[\frac{(a^{2} + b^{2})^{1/2} + a}{2(a^{2} + b^{2})} \right]^{1/2}$$
(58)

(57)

We can simplify the above equations in the following manner. R. De Levie (12) has tabulated ψ and μ as functions of λ . Suppose in our experimental case we have

$$\lambda = r_0 \sqrt{\omega/D} \le 1 \tag{41'}$$

Then according to the tabulation

 $\sin\psi \approx 1 \tag{59}$

 $\cos\psi \ll 1$ (60)

$$\mu = 1/2\lambda = 1/2 r_0 \sqrt{\omega/D}$$
(61)

In a qualitative sense condition 41' occurs when the radius of the pore is small compared to the length $\,\ell\,$ of the diffusion region in which $\,\ell\,\approx\,\left({\rm D}/\,\omega\right)^{1/2}$

The diffusion constant D for Ag^+ ion is known to have a value at 25°C of

1.2 x 10^{-5} cm²/sec. The angular frequency ω has an experimental maximum of 5.760 x 10^4 radians/sec. Hence in order for condition 41' to occur in the experimental frequency range the maximum value r_0 can have is such that

$$l = r_{0} (max) \left[\frac{5.76 \times 10^{4}}{1.2 \times 10^{-5}} \right]^{1/2}$$

Then

$$r_{c}$$
 (max) = 1.4 x 10⁻⁵ cm. (41'')

According to our experimental data we observe that condition 41' is satisfied, as will be shown later.

By applying Equations 59 and 60 to Equations 52 and 53 we conclude that a is negligible compared to b. Hence Equations 57 and 58 reduce to

$$R_{A} = \left[\frac{1}{25}\right]^{1/2} = \frac{1}{\omega c_{A}}$$
(62)

Inserting Equation 53 with the use of Equations 59 and 61 into Equation 62 yields

$$R_{A} = \left[\frac{\overline{R}}{2\left[\overline{C}_{D} \div \frac{X_{F}r_{o}}{2D^{1/2}}\right]}\omega}\right]^{1/2} = \frac{1}{\omega C_{A}}$$
(62')

The quantity $(\overline{k_{f}}r_{o}/2D^{1/2})$ is the Faradaic capacitance per unit pore length as shown by applying Equations 59 and 61, to Equation 47'. That is

$$\overline{C}_{\mathrm{F}} = \frac{\overline{\mathrm{K}}_{\mathrm{F}} \mathbf{r}_{\mathrm{o}}}{2\mathrm{D}^{1/2}} = \frac{\pi \mathrm{F} \mathrm{C}_{\mathrm{o}} \mathbf{r}_{\mathrm{o}}}{\mathrm{R}^{2}}$$
(47.1)

Hence the Faradaic impedance in the pore under condition 41' is

essentially just a capacitance independent of frequency. Note that the Faradaic resistance is negligible here. Let us express Equation 62' in terms of known quantities. We have

$$\overline{C}_{D} = 2\pi r_{o} \varkappa$$

$$\overline{R} = \frac{\rho}{2\pi r_o \tau}$$

where χ is the double layer capacity in farads/cm², ρ is the resistivity of the AgI in ohm-cm and τ is the thickness of the AgI along the pore wall. Hence Equation 62' becomes

$$R_{A} = \frac{1}{2\pi r_{o}} \left[\frac{\rho}{2\tau \left[\varkappa + \frac{F^{2}C_{o}r_{o}}{2RT} \right] \omega} \right]^{1/2}$$
(63)

and

$$\frac{1}{C_{A}} = \frac{1}{2\pi r_{o}} \left[\frac{\rho \omega}{2\tau \left[\varkappa + \frac{F^{2}C_{o}r_{o}}{2RT} \right]} \right]^{1/2}$$
(64)

The impedance Z_P of n_p pores is the resultant of the pore impedances connected in parallel. Assuming each pore has the same radius r_0 the pore impedances are equal. Hence

$$Z_{\mathbf{p}} = \frac{Z_{\mathbf{A}}}{n_{\mathbf{p}}}$$

Using Equations 54 and 8' we get

$$Z_{p} = \frac{R_{A}}{n_{p}} - \frac{1}{\omega n_{p} C_{A}} = R_{p} - \frac{1}{\omega c_{p}}$$

Equating coefficients in the above equation yields

$$C_{\rm p} = n_{\rm p} \dot{C}_{\rm A} \tag{65}$$

$$R_{\rm P} = \frac{R_{\rm A}}{n_{\rm p}} \tag{66}$$

The surface area of np pores is

$$A_{\rm p} = n_{\rm p} \pi r_{\rm o}^2 \tag{67}$$

Hence by use of Equations 63, 64, and 67 we get

$$\frac{1}{C_{p}} = \frac{r_{o}}{2A_{p}} \left[\frac{\rho \omega}{2\tau \left(\chi \div \frac{r^{2}C_{o}r_{o}}{2R^{2}}\right)} \right]^{1/2} = \frac{\omega^{1/2}}{K_{p}}$$
(68)

$$R_{\rm p} = \frac{r_{\rm o}}{2A_{\rm p}} \left[\frac{c}{2 \tau \left(\varkappa \div \frac{r^2 c_{\rm oro}}{2RT} \right) \omega} \right]^{1/2} = \frac{1}{K_{\rm p} \omega^{1/2}}$$
(69)

in which we have let

$$K_{p} = \frac{2A_{p}}{r_{o}} \left[\frac{2\tau \left(\chi + \frac{\Sigma^{2}C_{o}r_{o}}{2\pi T} \right)}{\rho} \right]^{1/2}$$
(70)

The quantity ($F^2C_{oro}/2RT$) is the Faradaic capacity C_f in the pore as shown by comparing Equations 47 and 47''. That is

$$C_{f} = \frac{r^2 C_{o} r_{o}}{2 R T}$$

Let us compare the approximate magnitudes of the double layer capacity χ and the Faradaic capacity C_f in a pore. Experimentally the Faradaic capacity is a maximum in excess Ag^{\pm} in .1NNNO₃ at $\psi = 58$ millivolts where $\overline{C}_0 = 3.44 \times 10^{-5}$ moles/liter. Using the maximum value for r_0 from Equation 41'' at 25°C we calculate from Equation 45'

45

$$c_{f} \approx 2.6 \times 10^{-2} \overline{c}_{o}$$

Hence here $C_f \approx 9.0 \times 10^{-7}$ farads/cm². Using Agar's results as an approximation for the double layer capacity of AgI in .1N KNO₃ in this potential range we obtain

$$x \approx 2.3 \times 10^{-5} \text{ farads/cm}^2$$

Since χ is at least 31 times greater than C_{f} and the ratio becomes greater at lower positive potentials we can neglect C_{f} in Equations 63, 69, and 70 for positive potentials.

Experimentally the Faradaic capacity is a maximum in excess I⁻ in .1N KNC₃ at ψ = - 363 millivolts where $\overline{C_0}$ = 7.50 x 10⁻⁵ moles/liter. Hence here

> $C_{f} \approx 2.0 \times 10^{-6} \text{ farads/cm}^2$ $\varkappa \approx 1.5 \times 10^{-5} \text{ farads/cm}^2$

Since χ is at least 7.5 times greater than C_{χ} and the ratio becomes greater at lower negative potentials we can neglect Cf in Equations 58,

69, and 70 for negative potentials.

The Impedance of the Silver Iodide-Solution Interface

We have shown that the impedance \mathbf{Z}_{S} at the AgI-solution interface is

$$\frac{1}{2} = \frac{\omega c_{p}}{\omega c_{p} R_{p} - i} + \frac{\omega c_{p}}{\omega c_{p} R_{p} - i} + i \omega c_{p} \qquad (8z)$$

Using Equations 26', 27', 68, and 69 we get

$$\frac{1}{Z_{\rm S}} = \frac{(K_{\rm p} + K_{\rm F}) \, \sqrt{\omega} \, + \, \mathrm{i} \, \omega \, c_{\rm D} \, (1 - \, \mathrm{i})}{1 - \, \mathrm{i}}$$

Let

$$K = K_{p} + K_{p}$$
 (71)

Then

$$Z_{\rm S} = \frac{1 - i}{\kappa \sqrt{\omega} + \omega c_{\rm D} + i \omega c_{\rm D}}$$

Upon rationalizing we get

$$Z_{\rm S} = \frac{K/\omega - i(2c_{\rm D} + K/\omega)}{2c_{\rm D}^2 \omega + 2c_{\rm D} K \omega^{1/2} + \kappa^2}$$
(72)

Since impedance $Z_{\rm S}$ can be represented by a series combination of resistance $R_{\rm S}$ and capacitance $C_{\rm S}$ we have

 $Z_{\rm S} = R_{\rm S} - i/\omega C_{\rm S}$ (72')

Upon equating real and imaginary parts of Equations 72 and 72" we get

$$\frac{1}{c_{\rm S}} = \frac{2c_{\rm D} + \kappa/\sqrt{\omega}}{2c_{\rm D}^2 + 2c_{\rm D}\kappa/\sqrt{\omega} + \kappa^2/\omega}$$
(73)

$$R_{S} = \frac{K/\sqrt{\omega}}{2c_{D}^{2}\omega + 2c_{D}K\omega^{1/2} + \kappa^{2}}$$
(74)

The Impedance of Solid Silver Iodide

Solid AgI contains Frenkel defects, i.e., Ag⁺ ion vacancies and Ag⁺ interstitials corresponding to negative and positive charges respectively. These points defects give rise to a space charge. For a pure crystal the concentration of vacancy and interstitial defects are equal. However, in practice the crystal contains impurities. Immobile cation impurities suppress interstitial defects while immobile anion impurities suppress vacancy defects. Hence one of the defects is usually reduced to such low concentrations that it can be considered insignificant. Using the Boltzmann distribution of point defects for a crystal containing immobile cation impurities and the Poisson equation the surface charge $\sigma_{\rm cr}$ in e.s.u./cm² in the crystal is

$$\sigma_{cr} = \pm \left[\frac{\epsilon_{ckTN_A}(\infty)}{2\pi} \right]^{1/2} \left[e^{Y_c(0)} - Y_c(0) - 1 \right]^{1/2}$$

where

$$Y_c(o) = \frac{eV_c(o)}{kT}$$

in which $V_c(o)$ is the potential just inside the surface of the crystal relative to the bulk lattice, $N_A^v(\infty)$ is the number of Ag⁺ ion vacancies in the bulk lattice, and ϵ_c is the dielectric constant of AgI. The

+ sign applies when $V_{\rm C}(o)$ is negative and - sign when $V_{\rm C}(o)$ is positive. A similar expression is found for a crystal containing immobile anion impurities. For a crystal containing completely mobile impurities the surface charge $\sigma_{\rm cr}$ is the same as for a pure crystal and is given in e.s.u./cm² by

$$\sigma_{\rm cr} = \left[\frac{2 \epsilon_{\rm C} k T N_{\rm A}^{\rm V}(\infty)}{\pi} \right]^{1/2} \sinh \frac{e V_{\rm c}(o)}{2kT}$$

This is the same form as the charge density in the diffuse layer in solution. Here $N_A^{\,\,v}(\infty)$ will depend on the impurity content.

The capacity of the above space charge is

$$C_{cr} = \frac{d\sigma_{cr}}{dV_{c}(o)}$$
(75)

Hence for the case of immobile cation impurities we get

$$C_{cr} = \frac{e}{2kT} \left[\frac{N_{A}^{V}(\infty) \epsilon_{c}kT}{2\pi} \right]^{1/2} \frac{Y_{c}(o)}{e^{Y_{c}(o)} - Y_{c}(o) - 1^{1/2}}$$

For the case of immobile anion impurities we get

$$C_{cr} = \frac{e}{2kT} \left[\frac{N_{A}^{i}(\infty) \epsilon_{c}kT}{2\pi} \right]^{1/2} \frac{-Y_{c}(0)}{\left[e^{-Y_{c}(0)} + Y_{c}(0) - 1\right]^{1/2}}$$

where $N_A^i(\infty)$ is the number of Ag⁺ ion interstitials in the bulk lattice. For the case of completely mobile impurities we get

$$C_{\rm er} = \frac{e}{2kT} \left[\frac{2 \epsilon_{\rm c} kT N_{\rm A}^{\rm V}(\infty)}{\pi} \right]^{1/2} \cosh \frac{e V_{\rm c}(0)}{2kT}$$
(75')

This is the same form as the diffuse capacity in the solution.

The conductivity 1/p in $ohm^{-1} cm^{-1}$ in solid AgI is exclusively ionic, i.e., motion of Ag⁺ through defect positions. It is expressed by

$$1/\rho = N_A e \sum X_j \mu_j$$

where $N_{\rm A}$ is the number of molecules per cm³ of the perfect crystal, $X_{\rm j}$ is the mole fraction and $\mu_{\rm j}$ is the mobility in cm²/volt-sec of the jth type of defect.

We represent the impedance of the solid AgI by a series combination of a capacitance C' and resistance R'. Capacitance C' may be derived from several capacitances in series, each with a corresponding shunting resistance. For instance it could be derived from a surface capacity as described above and a bulk capacity. The shunting resistances will draw negligible current at sufficiently high frequencies. In this case they will be insignificant and C' will behave simply as the equivalent capacitance of the several capacitances in series with frequency independent capacities. We observe experimentally that this does indeed occur. This will be explained later. The resistance R', due to the ionic conductivity in solid AgI, can be expressed by

$$R^* = \frac{\rho \tau_{eff}}{A_0}$$
(77)

where $\tau_{\rm eff}$ is the effective thickness of the AgI through which current passes. $\tau_{\rm eff}$ is a fraction of the total AgI thickness $\tau_{\rm e}$ since the

electrode is porous.

The Impedance of the Silver Todide-Solution System

The impedance $\rm Z_S$ at the Agl-solution interface is in sories with the impedance of solid Agl and the solution resistance $\rm R_{sol}$. Then the impedance $\rm Z_V$ of the entire circuit is expressed by

$$2_{\rm V} = R^{\rm i} - \frac{i}{\omega c^{\rm i}} \div R_{\rm S} - \frac{i}{\omega c_{\rm S}} \div R_{\rm sol}$$
(78)

Impedance $Z_{\rm V}$ consists of the series combination of the capacitance $C_{\rm V}$ and resistance $R_{\rm V}$ that make up the cell arm of the impedance bridge. That is

$$Z_{V} = R_{V} - \frac{i}{\omega^{C_{V}}}$$
(78°)

Comparing real and imaginary parts of Equation 78 and 78' we get

$$\frac{1}{C_V} = \frac{1}{C^*} + \frac{1}{C_S}$$
(79)

$$R_{\rm V} = R_{\rm o} + R_{\rm S} \tag{20}$$

whare

$$R_{o} = R' + R_{sol}$$
(81)

Using Equations 73 and 74 we get

$$\frac{1}{C_{\rm V}} = \frac{1}{C'} + \frac{2C_{\rm D} + K/\omega}{2c_{\rm D}^2 + 2c_{\rm D} K/\omega - + K^2/\omega}$$
(79')

$$R_{y} = R_{o} + \frac{\kappa/\sqrt{\omega}}{2c_{D}^{2}\omega + 2c_{D}\kappa \omega^{1/2} + \kappa^{2}}$$
 (80')

A good approximation to the parameters C' and K is obtained as follows. At sufficiently low frequency $C_{\rm D}$ is small compared to $K/\!/\omega$. Hence

$$\frac{1}{C_V} \approx \frac{1}{C'} + \frac{\sqrt{\omega}}{\kappa}$$
 at low frequency

Thus a plot of $1/C_V vs \sqrt{\omega}$ should be linear at low frequency with slope approximately 1/K and intercept approximately 1/C⁴. We do indeed observe such plots for frequencies at and below 1000 cps. This is illustrated in Figure 8. Since we have found that C⁴ is independent of frequency we conclude that the shunting resistances in AgI are insignificant. Since we have found that K is independent of frequency at all potentials we conclude Equation 41⁴ is valid. If Equation 41⁴ were not valid the Faradaic capacitance in the pore would be significant at high potentials and frequency dependent, and hence K would contain a frequency dependent term at high potentials.

A good approximation of the parameter $\rm C_D$ could be obtained in principle as follows. At sufficiently high frequency $\rm C_D$ is large compared to $\rm K/\sqrt{\omega}$. Hence

 $\frac{1}{C_V} \approx \frac{1}{C_1} \div \frac{1}{C_D}$ at very high frequency.

The highest frequencies used in the present work were not sufficiently high to permit use of this approximation.

EXPERIMENTAL RESULTS

In Tables 3 - 8 are listed the experimental values of the capacitance C_V and resistance R_V for the various AgI electrodes in KNO_3 solution as function of frequency ν , potential ψ and ionic strength of the electrolyte. The corresponding calculated values based on Equations 79' and 80' are also listed along with the determined values of C_D , K, C', and R_o . All capacitance values are expressed in microfarads. All resistance values are expressed in ohms. The parameter K is expressed in farads (radians/sec)^{1/2}. The frequency ν is expressed in cycles/sec.

The values of C_D , C¹, and K at a given potential were determined by finding the best fit of Equation 79° to the corresponding experimental capacitance values over the entire frequency range by use of the IBM 360/30 computer. The value of R₀ at a given potential was chosen such that the experimental and calculated resistance values agreed at the highest frequency investigated. This choice was made because R₈ is small there. Hence, the experimental resistance values served to check the determined values of C_v besides determining R₀. For electrode #9 we found that was considerable experimental error at the three highest frequencies at .001N solution. Hence, we did not include these data. Similarly, for electrode #10, we found considerable scatter at the two highest frequencies at .001N solution. However, the data at the lowest 5 frequencies was sufficient here to determine all the parameters, and so data for this system were included. All data at high positive potentials were also excluded.

52

ψ	ν			\mathbb{R}_{V}		C _D x10 ² Kx10 ⁴		C'	Ά.
		<u>Exp</u>	Calo	Exp	Cale				
32	255	1.610	1.608	400.4	400.1		a aa-		
	499	1.200	1.240	315.6	5-3-1	16.29	8.237	7.134	142.1
	750	1.048	1.053	275.8	277.4				
	1000	.9420	.9365	254.6	254.5				
	2440	.3540	.6530	203.1	203.0				
	4944	.4933	.4970	177.6	177.5				
	9168	.3875	.3989	162.6	153.2				
6	256	1.445	1.443	419.0	414.6				
	499	1.116	1.123	325.6	324.8	14.59	7.745	5.544	138.1
	750	9520	.9587	28413	283.9				
	1000	.8570	.8548	259.6	259.4				
	2440	. 6000	.5993	204.0	204.3		•		
	4944	.4579	.4555	176.9	177.0				
	9168	.3639	.3661	161.4	161.4				
-35	256	1.299	1.297	435.0	429.5				
	499	1.013	1.021	366.6	234.4	13.54	7.336	4.353	136.7
	750	.8755	.3762	291.8	291.4				
	1000	.7835	.7840	265.7	265.5				
	2440	.5530	.5541	205.4	207.2				
	L94A	4.254	.4239	177.7	178.2				
	9168	.3403	.3404	161.6	161.6				
-61	256	1.232	1.233	447.9	440.4	12.89	7.129	3.938	138.2
	499	.9770	.9746	343.3	342.5				
	750	.8375	.8383	500.0	193.2				
	1000	.7500	.7511	272.5	271.5				
	5410	5107	5394	273 3	212.2				
	ビーティングロート こうたいたい	.9207 7.007		101 3	107 F				
	4944 63.48	3070	.4076 3073	101.5	101.0	•			
	9100	•		20-7.0	10-7.5				
-98	256	1.185	1.187	450.7	444.8	12.62	6.969	3.669	135.8
	499	.9440	.9413	348.3	344.7				
	750	.8105	.8111	300.9	299.4				
	1600	.7250	.7275	273.1	272.1				
	2440	.5154	.5171	210.5	210.6				
	4.94.4.	. 3975	. 3965	179.7	180.0				

Table 3. The experimental capacitance and resistance values at potential ψ for AgI electrode #9 in .102N KNO3 are compared with the corresponding calculated values. The determined values of C_D, K, C' and R_o are also listed

Teble 3. Continued

1-1 CO 1-4 r-1 1----20 . . . co. 0 <ŀ w) വ èn 3 Ś e 6-1 1 ---- t 1--1 1-1 1 ം c) 걸 577 r -1 -Ó 55 \odot W) e). CI. 0) \mathcal{O} on. ŝ \mathcal{O} 47 61 60 20 $c\dot{c}$ ഗ ò ė. Ö (\mathbf{r}) Xx1(C) 1 5 5 5 S 50 NO. Ś S ~ 1 \sim ्रा 5 07 (°) \odot ~j; ÷. ω, $\sim r$ 14 . . \sim \odot 0 \odot \mathbb{C}^{1} ŝ 1-4 .--- 1 1-1 ~ I アムエクルエク 90909094 うるまでもなる キアアキタック 0,000,2400 O 448 550 2500 1572 2000 1572 2000 1-4 2000 1170 1270 1597 1597 4 O M M O M ် (၂) 400K400 E. 0040004 50124450 830 M M 0 0 $(A \cup A \cup O) = (A \cup A) =$ Lico NOHOONO 2002495 2002495 2002495 250000 20000 20000 20000 .108 .8552 .6584 .6584 .6584 .3757 .3757 .114 .000 .000 .0015 .0015 .0015 .0015 .0015 .0015 \$\$00000 \$000000000 0 487.948.9 907.948.9 907.948.9 907.9 8 ----e-d r - 1 e-4 1----3 152 9150 7505 7505 5034 3117 3117 00000000 9999999900 N CZ 99555580 805580 805580 805800 80580 80580 80580 80580 r-1 1-1 e---1 1---{ 256 499 750 2440 2440 2440 2440 2440 2440 256 495-750 1000 2440 4944 4944 4944 2468 256 499 750 2640 26440 9168 2 -240 5 1--1 209 c0 ·.) 02 27 ---Т 1 1

54 54 ,

Table 3. Continued

72	C'	1×10 ⁵	C_{-210}^{2}	v	R	v	C	ν	స
				Calc	Exp	Cale:	Exp		•.
139.4	3.313	6.756	12.30	456.2	464.6	1.124	1.123	256	-296
	,			353.0	357.2	.8964	.8990	499	
				305:3	308.3	.7748	.7750	750	
				278.2	279.4	.6964	.6950	1000	
				215.2	215.1	.4482	.4971	2440	
				183.9	183.7	.3841	.3842	4944	
				165.0	166.0	.3104	.3105	9168	
135.2	3.922	6.659	13.10	455.6	463.2	1.175	1.175	256	-331
				351.1	354.8	.9265	.9280	499	
				303.9	305.2	.7960	.7960	750	
				275.4	276.2	.7129	.7120	1000	
			· ·	211.7	211.3	.5058	.5047	244.0	
				180.3	160.0	.3887	3893	4944	
				162.4	162.4	.3138	.3138	9168	
137.3	6.108	6.539	13.36	460.6	433.6	1,299	1.298	256	-363
,				354.4	357.6	19980	1.000	499	
		•		306.3	307.6	.8465	.8460	750	
				277.4	278.2	7527	.7520	500 r	
			•	213.9	212.7	.5239	.5225	2440	
				181.7	181.0	.3997	.4003	2.944	
				163.2	163.2	. 3208	. 3204	9168	

It is observed that the calculated and experimental values of $C_{\rm V}$ and $R_{\rm V}$ agree very well, usually within 1 percent.

The value of R_0 should be independent of potential at a given ionic strength. The slight variation that is observed may be due to a variation in the geometry of the cell.

Representative plots of $C_V vs \frac{1}{\omega} 1/2$ are shown in Figure 7 for electrode #9 at .1N. Representative plots of $\frac{1}{C_V} vs \omega^{1/2}$ are shown in Figure 8 for electrode #9 at .1N.

								• • • · · · · · · · · · · · · · · · · ·	······
ψ	ν		Cvr	23	ζV	0;:x10 ²	Kx10 ⁵	c;	Ro
		Exp	Calc	Ilizo	Calc				
	•								
58	256	1.6010	1.5990	361.9	353.9	25.00	9.577	4.666	142.8
	499	1.2780	1.2810	281.3	232.1				
	750	1.1120	1.1130	248.1	249.9				
	1000	1.0060	1.0050	229.0	230.6				
	2440	.7400	.7345	188.2	188.3				
	4944	.5753	.5807	168.1	163.1				
	9288	.4301	.4825	158.4	157.1				
32	253	1.3110	1.3070	381.4	372.0	22.13	8.868	3.122	142.0
	499	1.0520	1.0720	298.1	204.3	÷.,			
	750	.9430	.9421	230.0	259.4				
	1000	.8600	.8571	233.1	238.5				
	2440	.6420	.6373	191.9	192.4		•		
	4944	.5083	.5080	170.2	170.2				
	9168	.4148	.4236	158.1	158.1				
3	256	1.1460	1.1450	405.6	383.0	20.75	8.459	2.462	140.0
	499	.9520	.9533	307.0	301.4				
	750	.8430	.9445	265.7	264.7				
	1000	.7720	.7723	242.5	24,2.8				
	2440	.5357	.5817	193,4	194.3				
	4944	.4704	.4669	171.0	171.0				
	9168	.3863	.3909	158.2	158.2				
-35	25.5	1.0180	1.0160	419.0	393.1	20.00	8.085	2.014	140.4
	499	.8540	.8557	314.3	307.9				
	750	.7610	.7035	270.5	259.5				
	1000	.7000	.7015	243.3	246.6				
	2440	.5385	1.5353	195.0	195.9				
	4944	.4365	.4332	171.5	171.3				
	9168	.3608	.3648	158.2	158.2				
-36	253	.8730	.9690	425.9	403.8	18.72	7.663	1.932	139.2
	499	.8120	.8160	318.5	413.0				
	750	.7250	.7281	273.6	273.7				
	1000	.6650	.6692	248.3	249.6				
	2440	.5157	.5114	195.4	196.5		:		
	4944	.4183	.4150	171.1	171.1				
	9168	.3463	.3505	157.3	157.3				
•									

Table 4. The experimental capacitance and resistance values at potential ψ for AgI electrode \$10 in .102% NMO3 are compared with the corresponding calculated values. The determined values of C_D, K, C⁴, and R₀ are also listed

Table 4. Continued

•

ψ	ν	C	à.	19	v	$C_{\rm mx10}^2$	Kx10 ⁵	C ¹	3
<u></u>		Exe	Gale	Exo	Cale			·····	0
				•					
-98	256	.9230	.9198	432.6	412.3	19.11	7.420	1.798	139.1
	499	.7740	.7770	322.3	319.5				
	750	. 59 20	.6945	276.6	277.9				
	1000	.6370	.6391	251.2	253.1				
	2440	.4945	.4901	197.2	198.2				
	4944	.4014	.3985	172.2	172.1				
	9158	.3331	.3371	157.8	157.8				
-137	256	.8880	.8350	437.8	415.5	18,87	7.363	1.682	139.9
	499	.74SO	.7510	325.8	322.0				
	750	.6700	.6732	279.2	280.0				
	1630	.6200	.6205	253.2	255.0				
	2440	.4829	.4780	198.6	199.8				
	4.944	.3920	.3898	173.2	173.2				
	9168	.3259	.3302	158.9	158.9				
-181	256	.8550	.8529	445.2	422.3	18.69	7.219	1.596	142.1
	499	.7230	.7258	330.9	327.4				
	750	.6495	.6516	283.5	284.5				
	1000	.3010	.6014	257.0	259.0				
	2440	.4696	4549	201.4	202.7				
	ムウムム	.3324	.3800	175.7	175.8				
	9168	.3183	.3226	161.2	161.2				
-209	256	.8490	.8472	446.1	423.6	18.65	7.206	1.578	142.6
	499	.7190	.7215	331.4	328.2				
	750	.6460	.6480	283.8	285.3				
	1000	.5980	.5982	257.5	259.7				
	2440	.4675	.4328	202.0	203.3				
	4944	.2809	.3785	178.4	176.4				
	9168	.3170	.3214	161.8	161.8				
-240	256	.8390	.8376	449.8	424.9	18.69	7.191	1.548	143.5
	499	.7120	.7144	333.6	329.3				
	750	.6400	.6422	285.6	285.3				
	1000	.5932	.5932	258.9	280.7				
	2440	.4646	.4597	203.3	204.2				
	4944	.3789	.3764	177.3	177.3				
	9168	.3157	.3200	162.7	162.7	· .			

57

Table 4. Continued

ý	ν			Y	217	Gazi 6 ²	X×10 ⁵	C'	
		Exp	Cale	Exp	Calc	001120		-	o
-278	256	.8520	.8492	451.5	425.2	18.85	7.152	1.595	143.1
	499	.7190	.7223	333,9	329.2				
	750	.64.50	.5484	285.2	286.0				
	1000		.5984	250.6	260.3				
	2440	.4670	.4623	202:4	203.6				
	4944	.3812	.3787	175.8	175.7				
	9168	.3177	.3219	162.1	162.1				
-296	253	.8545	.8517	451.6	424,8	18.88	7.146	1.605	142.6
	499	.7210	.7241	333.2	328.7				
	750	.6470	.6493	284.5	235.5				
	1000	5991	5096	257.7	25918				
	244.0	.4382	.4636	201.8	203.1				
	4944	. 2818	3792	176.2	376.2				
	9163	.3180	.3223	161.6	131.6	•			
0.01	020		0000	7.48 7	100 7	10.07	< 950	5 934	749 1
-00±	200	-0500	-0090			42.44	2000	÷.0	140 · 4
	455 750	-7400 2205	.1400	00019	- 555.0 - 656. 6				
	750	.0020	.00000 0110	20010 aka k	20910 050 N				
		.0010	.0119	20014 AAA 7	202.4				
		.4/41	.4087 0000	- 202 - 7	204-20				
	494,4, 63.69	.3850	.3022	110.0	113.0				
	9103	. 5206	.3 <i>2</i> 4℃	FOT'Q	101.5				
-363	256	.9970	.9939	472.3	445.4	19.19	6.483	2.492	143.0
	499	.8080	.8125	345.1	241.2				
	750	.7120	.7139	292.3	293.1			•	
	1000	.6490	. 6499	253.d	255.2	•			
	2440	.4930	.4886	203.7	205.2				
	4944	.3943	.3925	175.8	17518				
	9138	.3271	.3318	161.7	161.7				

 స	ν		,7	R	 V	Cox10 ²	Ки10 ⁵	C'	 R ₂
		Exp	Calc	End	Calc				
3	256	1.0320	1.0340	1485	1487	8.009	4.983	5.937	1043
	499	.7830	.7833	1348	1347				
	750	.6580	.6533	1102	1283				
	1000	.5800	.5813	1.4.1	1245				
	2440	.3933	.3968	1154	1158				
	4944	.2974	.2962	1112	1114				
	9168	.2311	.2330	1088	1088				
-11	256	1.0010	1.0020	1496	1493	8.145	4.905	5.359	1049
	499	.7650	.7324	1353	1351				
	750	.6410	.6427	1285	1286				
	1000	.5665	.5684	124.5	1247				
	2440	.3894	.3394	1157	1159				
	4944	.2933	.2916	1113	1115				
	9168	.2289	.2302	1039	1089	••			
-25	256	.9850	.9840	1508	1507	006.8	4.770	5.459	1055
	499	.7460	.7478	1330	1361			د.	
	750	.5280	.6303	1292	1294				
	1000	.5562	5575	1251	1254				
	2440	.3837	.3329	1132	1165				
	4944	.2905	.2880	1119	1120				
	9138	.2268	.2285	1094	1094				
-47	256	.9520	.9498	1516	1515	9.057	4.639	5.062	1055
	499	.7220	.7240	1353	1364				
	750	.6095	.6115	1294	1296				
	1000	.5402	.5418	1252	1255				
	2440	.3757	.3743	1102	1104				
	4944	.2859	.2833	1119	ע111				
	9168	.2247	.2265	1093	1093				
- 69	256	.9310	.9294	1514	1517				
	499	.7100	.7105	1362	1365	9.142	4.588	4.727	1054
	750	.5984	.6010	1294	1296				
	1000	.5312	.5330	1253	1255				
	2440	.3709	.3694	1159	1163				
	4944	.2631	.2804	1115	1017				
	9163	. 2227	.2243	1092	1092				

Table 5. The experimental capacitance and resistance values at , potential ψ for AgI clustrode #9 in .0102N KNO3 are compared with the corresponding calculated values. The determined values of $C_D,\ K,\ C',\ and\ R_o$ are also listed

Table 5. Continued

Ý	ν	Civ	· .	1. 1. j	ĩ	opx10 ²	<u>887</u> 5	C'	Ro
	·····	Eno	<u>Calle</u>	Marri.	<u> </u>				
-98	256	.9040	.9025	1.51.5	1519	6 6 6 6 6			
	459 770	.6920	.6930	1562 1995	1000 1000	9.009	4.542	4.259	1051
	001 000 t	.0009 2004	.0070 5010	エムジン	1290				
	2630	- <u></u> 	-0-10 RA98	1150 1150	مر فریکٹ ۲. ۲. ۲. ۲				
	2944	.2778	. 2757	1113	1115				
	91.68	.2195	.2211	1089	1039				
· · · · ·									
-127	256	.0290	.8876	1513	1515	- 	1 = 01	0 000	
	キンソー	.00000	2005. Sece	1000	1001 1000	8.400	4.504	3.975	104.0
	1000	5755	-0000 5144	1947	1251				
	2440	.3605	.3598	1153	1157				
	7977	.2760	. 2738	1102	1110				
	9168	.2179	.2197	1084	1034				
		0.000	0 k a c						
- 7 <u>8</u> 4	225	.8760	.8390	1521	1525	0 500	1 100	0 707	
	499	.0/10-	.6715	1007 1004	LOSI. Norr	8.808	4.487	3.121	1002
	1000	2000.	-0710 - 5020	エニンラコンティー	1989				
	2000	. 5075	2000 2524	1141	11.54				
	2.92.A	.2718	.2700	1116	1117				
	9165	.2152	.2167	1091	1091				
			م بر						
-213	238 796	.8650	.8345	1518	1521	0.010	1 1 1 2 3	0 775	2011
	499	10000 ·	10000 533 9	1002	1300 Nocia	0.940	4.400	3.713	1040
	750	-3659 FAS2	2000.	1048	エピンフ キャクロウ				
	2000	-2002 8548	.2020	1775C	115%				
	2940 2944	-3345 2714	2395	1100	1111				
	91.38	. 214.7	.2166	1034	1054		•		
-264	255	.8800	.8596	1514	1528				
	499	.6655	.3334	1389	1363	9.108	4.470	3.615	1045
	750	.5653	.5654	1287	1292				
	1000	.3546	.5044	1243	1250				
	2440	.3546	.3533	1152	1156				
	4944	.2718	.2699	1107 J	1109				
	A TES	.2154	.Z1/4	T083	1030				

.

Table 5. Continued

ப	ν	С _V	,	R	v	$C_{D} \times 10^{2}$	Kx10 ⁵	С'	Ro
1	-	Exp	Calc	Exp	Calc	-			Ū
									·
-288	256	.8650	.8640	1517	1517				
	499	.6685	.6690	1362	1362	9.211	4.497	3.624	1047
	750	.5684	.5696	1290	1293				
	1000	.5064	.5074	1248	1251				
	2440	.3564	.3555	1154	1157				
	4944	.2737	.2718	1109	1111				
	9168	.2174	.2190	1085	1085				
-321	256	.8810	.8808	1516	1519	9.569	4.465	4.026	1049
	499	.6785	.6785	1361	1363				
	750	.5755	.5764	1289	1293				
	1000	.5129	.5127	1247	1251				
	2440	.3599	.3587	1153	1157				
	4944	.2755	.2744	1109	1111				
	9168	.2199	.2216	1085	1085				
-345	256	.9110	.9104	1523	1524				
	499	.6830	.6937	1364	1366	10.15	4.372	5.144	1051
	750	.5865	.5864	1291	1295				
	1000	.5198	.5203	1249	1252				
	2440	.3642	.3626	1155	1157				
	4944	.2797	. 2779	1110	1111				
	9168	.2230	.2253	1086	1086				

-ti	7,	· C.			···	0-5310 ²	$x \times 10^2$	<u>.</u>	č.
Ģ	V		Calo		<u>V</u> Cello	000		0	~~o
- <u></u>			0	and all a line	0				
25	055	1 1280	1 0000	37.27	575 S	19/0	÷ ≤70	3 340	1040
00	4.30	0150	210200 2132	100/	1410	10.71	2.070	5.540	2002
		-0-00	-0700	5 67 7	1057				
		.7010	- 2 U _ U	14/ 1010	2 <u>2 4</u> 44 7 10 3 10				
	1000	10230	.0299	1410 1773	1414 -				
	2440	.4014	-40±9	11494	1144				
	4944	.34.14	.3510	1111	1107				
	9158	.2377	.2877	1089	1088				
3	256	.8550	.8534	1462	144.9	12.57	5.106	2.506	1048
	750	.5900	.5926	124.9	2053				
	1000	.5343	.5345	1211	1216				
	2440	.3937	.3835	1133	1138				
	4944	.3095	.2056	109.6	1697				
	9168	.2464	.2525	1076	1673				
-11	25.5		.3224	1469	1454	12.75	5.065	2.286	1052
	499	.6585	.3625	1310	1318				
	. 750	. 5750	5766	1250	1257				
	1000	.5209	. 5214.	1215	1220			•	
	26.2.0	. 38.65	1813	5136	3546				
	2.642	3049	2015	1100	1101				
	0163	97.6.6	2501	1000	1000				
	5.00	•	•	1000	2000		•		
-25	256	.7990	.7953	1474	14.59	13.06	4.996	2.136	1054
,	499	.6400	.6439	1320	1321				
	750	.5591	.5320	1253	1259				
	1000	.5084	.5092	1216	1222				
	2440	.0799	13749	1137	1141				
	4.944	.3013	. 2978	1100	1102				
	9168	2427	.2482	1081	1081				
	0.7.4						()]]		
-47	253 -	/650	.7659	1472	1459	13.29	4.951	1.958	- 1053
	499	.5260	.6236	1319	1320				
	750	.5438	.5462	1251	1258				
	1000	.4959	.4560	1214	1221			•	
	2440	.3745	.3678	1134	1140				
	4944	.2952	.2937	1099	1101				
	9168	.2407	.2458	1080	1080				

Table 6. The experimental capacitance and resistance values at potential ψ for AgT electrode #10 in .0102N KMO3 are compared with the corresponding calculated values. The determined values of C_D, K, C', and R_o are also listed

略.

ψ	ν	C _V		R	V	C _D x10 ²	Kz10 ⁵	C†	Ro
		Exp	Cale	Exp	Cale				
_ 10	0 E 4	7500	7476	57.77	7450	12 1.4	4 à4A	7 847	1054
-09	200, 7.00	.7000 		1440	1301	10. m , 1,	~~~~	2.047	1004
	-42.2 740	5349		1043	2 13 4 G				
ς.		, J J 2 7 0 0 2	4000	1013	1000				
	1000	-4000 NACA	-4000 1615	1100	-444	4			
	2044 O 1 0 1 1	.3394 00/0	.2029	1100					
	4944	- 294-9 0102	- ZY 10 - 457. c	エンジン	LiUi Toop				
	9163	. 290	° 0	1001	1001				
-98	256	.7230	.7200	1478	1463	13.31	4.903	1.705	1054
	499	.5889	.5919	1323	1323				
	750	.5186	.5213	1254	1230				
	1000	.4.74.2	.4750	1218	1223				
	2440	3602	.3557	1136	3141				
	<u>2924</u>	2890	. 2857	1100	3762				
	91.58	2354	24.62	1031	1081				
	200	• • • • • • •	.2.02	2002					
-127	256	.7070	.7043	1480	1465	13.27	4.857	1.639	1053
	499	.5775	5804	1324	1324				
	750	.5089	.5118	1254	1231			•	
	1000 .	.4.658	.4889	1216	1223				
	24,4,0	.3545	.3503	1135	1140				
	4944.	.2355	.2821	1099	1101				
	9168	.2327	.2375	1080	1030				
-184	250	.6330	.6808	1487	1470	13.12	4.834	1.523	1055
	495	.3511	.5628	1330	1328				
	750.	.4930	.4985	1260	12.14				
	1000	.4551	.4555	1121	1226				
	2440	.3478	.3434	1138	11 - 3				
	4994	.2805	.2770	1101	1104				
	9163	.2285	.2335	1052	1632				
212	ちまく	6750	67.20	1400	1270	13 63	A 200	1 504	1053
-210	200 Arch	.0/30	.0700 	たいのの	1-2-20	±0.00	÷.000		1000
	モンン	1000/ Acto	-0004 7070	1010 1060	1261 2060				
	100	- 499 LC 7. 5 t 1	14554U 7575	1400	100=				
		.4012	.4010 0/07	エムエン	1440				
	2440	.3432	.340/	113/	1141				
	4,954,	.4/5%	.2750	1000	1102				
	9200	.2268	.2319	1020	1030				

Table 6. Continued

	•		i.X.	7	C _D X±0-		C ·	×0
	END	Cale	Exo	Cale	•			
253	.0690	.6.35	1493	1476	13.17	4.767	1.482	1057
499	.5506	.5531	1332	1332				
750	.4875	.4395	1263	1268				
1000	.4470	.4477	1220	1220				
2440	.3429	.3384	1142	1145				
4944	.2769	.2738	1105	1103				
9168	. 2259	.2310	1064	1034				
255	.6710	. 6686	1497	1475	13.31	4,799	1.478	1059
<u> 200</u>	5512	5550	1333	1000			~ • • • •	2007
750	<u>ARG 2</u>	2015	1944	1940				
1000	<u>640</u> 1	2.4.9.5	2203	1920				
2600	11.1.7	24.03	1140	1120				
10.4A	07-47	0750	1105	13.07				
0122	0975	0305	1084	1026				
100	• / _	م الله ال الله ال	2000	2000				
253	4990	K792	1500	1475	13 55	4.756	1.547	1058
2.99	• २२ २५	5532	1935	1331			2.0.7	2020
750	4940	45.55	1265	3557				
1000	/ 996	7539 A 539	2997	1000				
2000		24000 ≎7.07	11/1	n an an an ar The state				
AC.A.	2030	.34/27	1105	1104				
99-9-9 61<2	-2000	- 43 7 4 G 3 4 2	1.005	1025				
9100	ک لاشک ه	<i>رر.</i> .	<u>ل</u> ت <i>ل</i> ال	1000				
255	7100	7074	7576	3Z.245	14. 24	4.568	1.794	1061
200	5745	5721	7441	1348				
750		5030	1.047	1971				
1000	2,896	10000 広内の	1996	1989				
2000 9740	.4020 SS02		11/2	11/5				
1011 1011	0220 0920	-0-70 2814	11/14	1105				
~>~~ G1 & Q	2000	0101 4	1084	1095				
	$\begin{array}{c} 253\\ 499\\ 750\\ 1000\\ 2440\\ 4944\\ 9168\\ 256\\ 750\\ 1000\\ 2440\\ 9168\\ 259\\ 1000\\ 2440\\ 9168\\ 256\\ 750\\ 2440\\ 4944\\ 9168\\ 256\\ 750\\ 1000\\ 2440\\ 4944\\ 9168\\ 256\\ 750\\ 000\\ 2440\\ 4944\\ 9168\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

64

lap	le	7	

. The experimental capacitance and resistance values at potential ψ for AgI electrode #11 in .0102M KNO₂ are compared with the corresponding calculated values. The determined values of C_D, K, C¹, and R₀ are also listed

Exp Cale Exp Cale -9 256 .9760 .9763 1413 1405 14.13 7.183 2.119 1111 499 .8100 .8095 1312 1310 7.183 2.119 1111 499 .8100 .8095 1312 1310 7.183 2.119 1111 499 .8100 .8095 1312 1310 7.183 2.119 1111 499 .8100 .8095 1312 1310 7.183 2.119 1111 499 .8100 .8095 1312 1266 1266 1000 .6510 .6517 1241 1240 2440 .4843 .4843 1180 1181 4944 .3838 .3826 1151 1152 9163 .3130 .3145 1135 1135 1135 -31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109	Ro	C ^r	Кж10 ⁵	່ເ _ງ x10 ²	v	R	; 	Cv	$\overset{\cdot}{ u}$	ψ
-9 256 .9760 .9763 1413 14.03 14.13 7.183 2.119 1111 499 .8100 .8095 1312 1310 750 .7160 .7148 1265 1000 .6510 .6517 1241 1240 2440 .4843 .180 1181 4944 .3838 .3825 1151 1152 9163 .3130 .3145 1135 1135 -31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109 495 .7740 .7742 1305 1308 750 .6860 .6364 1259 1264 1000 .5260 .63276 1234 1237 1237					Calc	END	Calc	<u>Exp</u>		
-9 256 .9760 .9763 1413 1405 14.13 7.188 2.119 1111 459 .8100 .8095 1312 1310 1310 150 1510 1511 1510 750 .7160 .7148 1267 1266 1600 .6510 .6517 1241 1240 2440 .4843 .4843 1180 1181 .4944 .3836 .3826 1151 1152 .9168 .3130 .3145 1135 .135 -31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109 499 .7740 .7742 1305 1308 .750 .6860 .6364 1259 1264 1000 .8260 .6276 1234 1237 1237 .56										
499 .8100 .8095 1312 1310 750 .7160 .7148 1267 1266 1000 .6510 .6517 1241 1240 2440 .4843 .4843 1180 1181 4944 .3838 .3826 1151 1152 9163 .3130 .3145 1135 1135 -31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109 495 .7740 .7742 1305 1308 750 .6860 .6964 1259 1264 1000 .8260 .6276 1234 1237 1237	1111	2.119	7.183	14.13	1403	1413	.9763	.9760	256	-9
750 .7160 .7148 1266 1000 .6510 .6517 1241 1240 2440 .4843 .4843 1180 1181 4944 .3838 .3826 1151 1152 9163 .3130 .3143 1135 1135 -31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109 499 .7740 .7742 1305 1308 .750 .6860 .6364 1259 1264 1000 .8260 .6276 1234 1237 .750 .560 .6276 .234 .727				2	1310	1312	.8095	.8100	4,9 9	-
1000 .6510 .6517 1241 1240 2440 .4843 .4843 1180 1181 4944 .3836 .3826 1151 1152 9168 .3130 .3146 1135 1135 -31 256 .9290 .9282 1469 1407 14.90 7.066 1.935 1109 499 .7740 .7742 1305 1308 750 .6860 .6364 1259 1264 1000 .8260 .6276 1234 1237 1237					1266	1237	7148	7160	- 750	
2440 .4843 .4843 1180 1181 4944 .3836 .3826 1151 1152 9168 .3130 .3143 1135 1135 -31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109 499 .7740 .7742 1303 1308 750 .6860 .6364 1259 1264 1000 .8260 .6276 1234 1237					1240	1241	.6517	.6510	1000	
4944 .3838 .3826 1151 1152 9168 .3130 .3143 1135 1135 -31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109 499 .7740 .7742 1305 1308 1308 1308 150 1264 1000 .5260 .6327.6 1234 1237					1181	1180	.4843	.4843	2440	
9168 .3130 .3143 1135 1135 -31 256 .9290 .9282 1469 1407 14.90 7.066 1.935 1109 499 .7740 .7742 1305 1308 750 .6860 .6364 1259 1264 1000 .5260 .6276 1234 1237					1152	1151	.3825	.3838	4944	
-31 256 .9290 .9282 1469 1467 14.90 7.066 1.935 1109 499 .7740 .7742 1305 1308 750 .6860 .6364 1259 1264 1000 .8260 .6276 1234 1237					1135	1135	.3145	.3130	9168.	
-31 256 .9290 .9282 1409 1407 14.90 7.066 1.935 1109 499 .7740 .7742 1305 1308 750 .6860 .6364 1259 1264 1000 .5260 .6276 1234 1237			•							
499 .7740 .7742 1305 1308 750 .6860 .6864 1259 1264 1000 .5260 .6276 1234 1237	1109	1.935	7.066	14.90	1407	14,09	.9282	.9290	256	-31
750 .6860 .6864 1259 1264 1000 .6260 .6276 1234 1237					1308	1303	.7742	.7740	499	
1000 .5260 .5276 1234 1237					1264	1259	.6364	.6860	750	•
					1237	1234	.6276	.3260	1000	
2440 .4715 .4706 1174 1173					1173	1174	.4706	.4715	2440	
4944 .3758 .3745 1147 1149					1149	1147	.3745	.3758	4944	
9168 .3090 .3102 1132 1132					1132	1132	.3102	.3090	9168	
57 - 054 - 2000 - 0000 0715 - 1750 - 750 - 7657 - 755 - 1014	1114	1 756	7 067	15 10	1/23	うんてき	66.60	2000	076	57.
-UW 200 .0900 .0900 1419 1411 LU.10 7.007 1.709 1114 700 7777 1912 101		لالالاميذ	1.031			2-222	- 3500	-0200 77.00	200 200	- 5-4
750 AX40 AASA 1945 1957	• •				1010 1030	1911	./4//	.7400 SXEO	++2-2 7 = 0	
1000 (1000 1100 1200 1200 1000 (1000 (1000 1200					1200	1010	-0000 4367	.00000	1000	
					మమాలు ఇంకాలలో	1170	.010~ A <sa< td=""><td>10100</td><td>2000</td><td></td></sa<>	10100	2000	
1940 -9012 -9019 1170 1104 Acaa 2700 240A 2150 1253					1153	1172	-₩0±₩ 3≤04	14044	10	
6149 - 1070 - 1009 - 1100 6149 - 9652 - 1670 - 1187 - 1787					1100	1124	10000	2058	0148	
9103 . 0072 1107 (107					و مہ ۔۔ ب	/			9103	
-77 255 .8550 .8542 1420 1414 15.40 7.102 1.631 1119	. 1119	1.631	7.102	15.40	1414	14/20	.8542	.8550	253	-77
499 .7230 .7230 1313 1316 ·					1316	1313	.7230	.7230	499 -	
750 .6450 .6464 1271 1272					1272	1271	.64.64	.6450	750	
1000 .5940 .5944 1244 1243					1243	1244	.5944	.5940	1000	
2440 .4542 .4531 1185 1187					1137	1185	.4531	4.542	2440	
4944 .3658 .3647 1157 1158					1158	1157	.3647	.3658	4944,	
9168 .3031 .3045 1142 1142					1142	1142	.3045	.3031	9158	
		_								
-108 256 .8290 .8286 1420 1414 15.69 7.183 1.525 1123	1123	1.525	7.183	15.69	1414	1420	.3286	.2290	256	-108
499 .7060 .7057 1318 1318					1318	1318	.7057	.7060	499	
750 . 6330 . 6334 . 1273 . 1274					1274	1273	.6334	.6330	750	
1060 .5832 .5840 1247 1248					1248	1247	.5840	.5832	1060	
2440 .4483 .4484 1188 1190					1190	1188	.4484	.4483	2440	
4944 .3633 .3626 ll.0 ll51					1151	2.20	.3626	.3638	4944	
9168 .3027 .3039 1145 1145					1145	1145	.3039	.3027	9168	

65

Table 7. Continued

ψ́	ν	Cy		N.		c _o x10 ²		C;	Ro
		Exp	Cale	lixo		······································			
				•					
-152	256	.5000	.8006	14.12	1417	15 50	7.109	1.430	1128
	499	16860	.6355	1319			/ • • • • •	21,00	
	750	6170	.6171	1275	3277			•	
	1000	.5701	.5702	2249					
	2440	4403	.4402	1192	1195				
	4944	.3578	.3571	11.54	1164				
	9138	.2988	.2999	1148	1148				
-203	200	.7830	.7933	1423	1423	15.96	7.219	1.374	1134
	499	.3730	.6734	1329	1327				
	750	.6030	.6076	1234	1234				
	_ 1000	.5676	.5624	1253	1253				
	2440	.4376	.4064	1201	1200				
	4,944	.3560	.3554	1172	1172				
	9168	.2982	.2995	1155	1156				
- 31.1.	t, z, ∕.	7705	7700	37.34	14:00	16 75	7 252	1 376	5773
	466	6460	5725		1005	10.10	1.22	1.000	
	790	.0000. Acoo	20000. 2019	1000	1909		•		
	1000	10010	.0010 5577	1264	1966				
	2660	-0000 2353	434.2	-1007	1208				
	2940	3550	3545	1170	1120				
	9168	-2000 2677	2003	1165	1165				
	2.00	/ / /	•	-105	1200	÷			
-272	256	.7725	.7726	1428	1421	16.30	7.274	1.333	1135
	4.9.9	.3660	.6661	1327	1326				
	750	.6030	.6022	1284	1283				
	1000	.5573	-5521	1257	1257				
	2440	.4363	.4349	1200	1200				
•	4544	.3564	.3554	1173	1172				
	9168	.2986	.3002	1157	1157				
_309	254	7775	7775	5490	たんた合	16 50	7 304	1 343	1134
-505	200 ABO	-7775 S700	5765	1254	エッエロ・キャック	10.07	1.00	±.J~J	1111-1997
	マラク	.0700	.0102 5040	1020	1-20-1				
	700 Nicina	5570	.0000 5414	101	1955 1955				
	2000	-2019 Aison	- <u>1010</u> - <u>1010</u>		1160 1				
	244U 4074		-9070 3520	1170	1171				
	9378	2010	3027	1155	1155 1155				
	2 200			م و ب ب	ل و				

66

.

ψ	ν	ν <u></u>		RV		c _D ×10 ²	К×10 ⁵	с'	Ro
		Ехр	Calc	Ехр	Calc				
_1	. 256	7030	7010	8140	8148	5 587	3 153	6 025	7463
-1	200 //00	5220	5228	7922	7927		5.155	0.025	7405
	750	4340	4366	7820	7826				
•	1000	3820	. 3840	7763	7766				
	2440	. 2605	.2600	7630	7630				
	4944	.1775	. 1939	7571	7562				
	9168	.1105	.1531	7537	7523				
	7100		12001		/ 2 - 0				
-25	256	.6360	.6348	8140	8151	6.232	2.964	4.186	7441
	499	.4800	.4794	7914	7917				
	750	.4010	.4032	7800	7811				
	1000	.3540	.3564	7744	7747				
	2440	.2460	.2455	7606	7606				
	49 44	.1730	.1861	7546	7536				
	9168	.1100	.1493	7510	7497				
<i>c i</i> .	256	5000	5961	9140	0120	7 120	2 0 25	2 901	7620
-04	230		. 5001	7000	7005	1.130	2.945	2.001	7420
	499	.4490	.4JIZ	7000 7773	7005	,			
	1000	. 3600	3615	7715	7715				
	2640	2410	2406	7575	7575				
	2440	1710	1858	7516	7507				
	9168	1100	1517	7480	7470		· •		
	7100		• 1517	7400	,410	· .			
-72	256	.5820	.5784	8140	8122	7.301	2.943	2.575	7428
	499	.4440	.4474	7875	7888				
	750	.3770	.3813	7767	7782				
	1000	.3410	.3401	7707	7719				
	2440	.2410	.2407	7580	7580				
	4944	.1710	.1865	7522	7513				
	9168	.1100	.1527	7484	7477				
105	057		EELO	9140	0100	7 566	2 0.25	0 100	7/10
-105	250	.5560	.5540	0140 707/	7067	1.300	2.925	2.102	7410
	499	.4300	.4325	7874	/00/		•		
	1000	. 3090	.3/05	7728	7762				
	1000	.3320	.3310	7691	7677				
	2440	. 23/0	.2369	7500	7500				
	4944	.1095	.1049	7502	1473 7/57				
	9100	.1100	.1323	/4/0	7437				

Table 8. The experimental capacitance and resistance values at potential ψ for AgI electrode #10 in .00102N KNO₃ are compared with the corresponding calculated values. The determined values of C_D, K, C', and R_o are also listed

,		CV	CV		Ry			~ 1	· 5
ψ 	ν	Exp	Cale	Sxp	Cale				- ⁷ .0
-126	256	.5500	.5482	8105	8067	7.806	2.956	2.037	7381
	499	.4280	.4300	7333	7834				
	750	.3670	.3691	7725	7733				
	1000	.3320	3008	7383	7667				
	2440	.2370	.2371	7529	7529				
	4944	.1700	.1853	7470	74,64,				
	9166	.1100	.1528	7446	7428				
-183	255	.5350	.5338	8065	8059	7.961	2.913	1.903	7372
	499	.4190	.4202	7329	7824	•			
	750	.3600	.3617	7713	7718				
	1000	.3250	.3249	7648	7656				
	2440	.2350	.2345	7317	7517				
	:4944	.1700	.1846	74,64,	7452				
	913S	.1105	.1532	7433	7417				
-221	253	.5290	.5277	\$105	8085	8.244	2.876	1.887	7393
	499 -	.4150	.4160	7843	7847				•
	750	.3570	.3584	7730	7741	•			
	1000	.3220	.3222	7665	7678				
	2440	.234.0	.2335	7559	7539				
	4944	.1760	.1846	7477	7474				
·	9168	.1105	.1339	7444	7440				
-251	258	.5260	.5243	8140	8103	3.288	2.887	1.823	7420
	499	.4120	.4143	7875	-7869				
	750	.3550	.3574	7750	7763				
	1000	.3220	.3215	7691	7700.				
	2440	.2340	.2334	7562	7562				
	4944	.1700	.1847	7493	7498				
	9138	.1105	.1541	7469	74.63				
-286	255	.5280	.5261	8150	8126	8.611	2.869	1.370	7443
	499	.4140	.4154	7835	7639				
	750	.3530	.3584	7770	7783				
	1000	.3220	3225	7705	7720				
	2440	.2360	.2347	7582	7582				
	4944	.1720	.1834	7521	7519				
	9168	.1115	.1561	7588	7485		•		
-322	256	.5370	.5 <i>04</i> 8	8110	8071 -	8.744	2.854	1.986	7389
	499	.4190	.4208	7843	7833				
	750	.3600	.3625	7731	7727				
	1000	.3250	.3259	7663	7664				
	2440	.2380	.2369	7527	7527				
	4944	.1725	.1882	7466	7464				
	9163	.1120	.1577	7433	7430				

68
Figure 7. Dependence of series equivalent capacitance on frequency at various potentials (millivolts relative to zero point of charge) for Agl-aqueous KNO3 system

Figure 8. Dependence of reciprocal series equivalent capacitance on frequency at various potentials (millivolts relative to zero point of charge) for AgI-aqueous KNO₃ system

DISCUSSION

The brea A_g of the flat, smooth portion of the definition electrods is determined by assuming the value of the AgN double layer capacity X at the zero point of charge in .CONN KND3 solution to be equal to that for the Hg-NaF solution interface under the same conditions. The latter value is 5.00 µfarads/cm² at 25°C according to the reliable work of D. C. Orahame (2). This is a very reasonable assumption since the double layer capacity is very nearly equal to the surface independent diffuse capacity under the above conditions as discussed previously.

Since

$$x_{\mathcal{F}} = C_{\mathcal{D}}/\chi \tag{82}$$

then A_f can be calculated from the value of C_D measured under these conditions. This method is appropriate for electrode #10 in which double layer capacitance C_D values can be determined in .001N solution. For electrodes #9 and #11 area A_f is determined from the value of the AgI double layer capacity of electrode #10 near $\psi = 0$ in .01N solution. The values of area A_f in cm² for the various electrodes are listed in Table 9.

The area A of the porcus portion of the Agl electrode is calculated by using the relation

$$A_{0} = A_{0} - A_{f}$$

The values of area A_p in cm^2 for the various electrodes are listed in Table 9. A comparison of the values of A_p and A_f for a given electrode shows that the electrode surface is largely porous.

Electrode	$A_{\rm e} \times 10^2$	$A_{\vec{r}} \times 10^2$	$\mathbb{A}_{0} \times 10^{2}$	$\mathbb{A}_{p}^{2}/\mathbb{A}_{2} \times 10^{2}$
# 9	3.58	.593	2.99	15.1
<i>¥</i> 10	3.57	931	2.34	7.48
₩11 .	2.64	1.045	1.60	2.45

Table 9. The values of the total area $A_{\rm e},$ che flat area $A_{\rm f},$ and the porous area $A_{\rm p}$ of the various electrodes in ${\rm cm}^2$

The Silver Iodice Double Layer Capacity

The values of the AgI double layer capacity χ at a given potential ψ and ionic strength of KMO₃ can be calculated once Af is determined. Such values of χ for the various electrodes are listed in Tables 10-12. Plots of χ vs ψ at a given ionic strength of KMO₃ for the various electrodes are shown in Figures 9-11. The χ values at a given potential ψ and ionic strength for the 3 electrodes agree within 10 percent for negative potentials and within 15 percent for positive potentials.

Since there is no minimum at and near the zero point of charge in the $\chi - \psi$ plot at .NX solution then the AgI double layer capacity approximately equals the Stern capacity here. The sharp rise in χ for positive potentials at .NX solution is mainly attributed to the specific adsorption of MOS ions. The small rise in χ at high negative potentials ($|\psi| \ge 200$ mv.) may be due to the specific adsorption of K^2 ions. This rise is also observed in .GNN KNO3 solution. On the other hand it may be largely due to a decreasing thickness of the Stern layer resulting from the compression of the solvent molecules by the high electrical field emanating from the surface which is believed to cause the increase also observed in the double layer capacity at the Hg-solution interface at high negative potentials.

At high potentials the double layer capacity approximately equals the Stern capacity unless specific adsorption occurs. Since the Stern capacity is independent of the electrolyte concentration then the double layer capacity χ values at the various electrolyte concentrations should tend to converge at high negative potentials. However, no such convergence is observed at high negative potentials. This non-convergence of χ indicates that specific adsorption of K⁺ ions occurs in this potential range. An observation of the double layer capacity values for the Hg-NaF solution interface based on Grahame's work show that values of χ at .lN and .01N electrolyte concentrations converge at high negative potentials while the χ values at .001N fall somewhat below this convergence.

The surface charge density σ_0 at a given potential ψ can be obtained by integration of the \varkappa - ψ curve provided that $d\psi \approx d\psi_0$. Since $d\sigma_0 = \chi d\psi_0$ (1') then by assuming $d\psi = d\psi_0$ (83) $\sigma_0 = \int_0^{\psi} \chi d\psi$

The conditions under which Equation 83 is valid are found as follows. Let φ denote the AgI half cell potential. That is

$$\varphi = E_{c} - E_{cal} \tag{84}$$

Potential φ can be expressed by

where
$$\chi$$
 denotes the surface potential jump due to the dipole orientation

of the solvent.

Since
$$\psi = E_c - E_c(zpc)$$
 (7)

then from Equations 84 and 84'

$$\psi = \varphi - \varphi \text{ (zpc)}$$

$$\psi = \psi_{0} + V_{c}(0) - V_{c}(0)(\text{zpc}) + \chi - \chi \text{ (zpc)}$$
(7.11)

 (24^{1})

Hence if the variations of $V_{c}(c)$ and χ with surface charge σ_{c} are very small compared to those of ψ_{c} or if the change of $V_{c}(c)$ is compensated by an approximately equal but opposite change of χ then

$$d\psi \approx d\psi_{\alpha}$$

Experimental values of χ and $V_{\rm c}(o)$ have not been obtainable. Hence the validity of Equation 83 cannot be checked directly. Though we have not integrated the χ - ψ curve it would be useful to do. In the potential region where no specific adsorption occurs and by assuming that Equation 83 is valid in that potential region this integration yields the diffuse charge density $v_{\rm g}$. Then the potential at the cuter Holmholtz plane $\psi_{\rm g}$ can be calculated and hence the diffuse capacity can likewise be calculated. The Stern capacity could then be determined by use of Equation 1. If the Stern capacity thus obtained proved to be independent of electrolyte concentration this would indicate that both of the above assumptions are valid, if not, that one or both are invalid. Since we have already indicated that specific adsorption is likely at positive potentials and

 $\boldsymbol{\omega} = \boldsymbol{\mathbb{V}}_{c}(\boldsymbol{o}) + \boldsymbol{\chi} + \boldsymbol{\psi}_{\boldsymbol{o}}$

at high negative potentials then this integration would yield only the surface charge density σ_0 in these potential regions provided Equation 83 is valid. We will compare our results with those of other workers and arrive at possible conclusions relative to these assumptions in this way.

Most recently Lyklema and Overbeek (8) and Agar (10) have studied the AgI-solution interface by measuring the adsorption of the potential determining ions on a AgI surface using a titration method. By differentiation of the surface charge-potential ψ curve they purport to obtain the differential capacitance C_D of the AgI double layer. It was assumed that $d\psi \sim d\psi_0$, otherwise the differentiation would not yield C_D correctly. By setting the value of the double layer capacity χ at the zero point of charge in .001N solution of indifferent electrolyte equal to that for the Hg-NaF solution double layer under the same conditions they obtain the surface area of the AgI and hence χ at any other potential ψ and ionic strength.

Plots of the differential capacity \varkappa of the AgI-KNO₃ solution double layer vs potential ψ at various ionic strengths of KNO₃ as determined by Agar are shown in Figure 12. Lyklema's plots of \varkappa vs ψ at various ionic strengths of KNO₃ agree within 10 percent with those of Agar's except at high negative potentials where Lyklema's values decrease markedly while Agar's values decrease only slightly. This is in contrast to our observed rise in \varkappa at high negative potentials. A rise in the double layer capacity at the Ag₂S-solution interface at high negative potentials has been observed by Iwasaki and DeBruyn (14). However, unlike our case their values do converge at the various ionic

strength of KNO3						
.102N XNO3		.0102N KNO3				
<u> </u>	<u> </u>	ρ/α		<u>.</u>	<u> </u>	<u>21 n'</u>
32	27.5	24.3		3	13.5	52.8
6	24.6	24.6			13.7	34.2
-33	22.8	25.2		-25	1415	33.0
61	21.7	25.4		-47	15.3	42.2
-98	21.3	2610		-39	15.4	43.5
-137	20.95	26.7		-93	15.2	43.7
-181	20.8	27.3		.). −1 27	15.1	43.6
-209	20.95	27.7		-184	14.85	43.6
-240	21.05	27.7		-213	15.1	44.9
-278	21.3	28.1		-264	13.55	45.8
- 29 6	21.6	28.5		-208	15.5	46.2
-331	22.1	31.7	, ,	-321	16.1	30.5
-363	22.5	40.8		-351	17.1	63.1
		~				

Table 10. The AgI double layer capabily \varkappa in microfaceds/cm² and the AgI resistivity p, expressed as p/Q⁴ in ohms are listed for electrode #9 at a given potential ψ in millivolts and lonic strength of KNO₃

					· · · · · · · · · · · · · · · · · · ·			
	.102N KN	103	. 0	102N KNC)3	. •	00102N	i kno ₃
_ψ	х	ρ/α'	<u> </u>	ĸ	ρ/α'	ψ	<u> </u>	ρ/α'
58	26.85	30.9	38	14.4	42.8	-1	6.00	58.4
32	23.8	29.6	3	13.5	49.5	-25	6.69	72.1
6	22.3	29.6	-11	13.7	50.5	-64	7.67	83.7
- 35	21.5	30.7	-25	14.0	52.8	-72	7.84	84.5
-61	21.2	33.6	-47	14.3	54.4	-105	8.13	88.5
-98	20.5	34.7	-69	14.4	55.2	-126	8.17	87.0
-137	20.3	·34 . 8	-98	14.3	55.4	-186	8.55	93.9
-181	20.1	35.9	-127	14.25	56.25	-221	8.85	99.9
-209	20.05	35.9	- 184	14.1	56.2	-251	8.90	100.2
- 240	20.1	36.2	-213	14.05	56.85	-286	0.25	107.7
-278	20.25	37.3	-264	14.15	58.4	-322	9.42	120.4
-296	20.3	38.0	-288	14.3	59.0			
-331	20.6	45.7	-321	14.55	64.6			
-363	20.6	70.9	-351	15.3	88.7			

Table 11. The AgI double layer capacity \varkappa in microfarads/cm² and the AgI resistivity ρ , expressed as ρ/α' in ohms are listed for electrode #10 at a given potential ψ in millivolts and ionic strength of KNO₃

 ψ		x	o/ 0:+
-9		13.7	28.1
-31		14.25	30.0
-5-		14.5	30.45
-77		14.75	30.55
-108	•	15.0	30.4
-152		14.9	30.1
-203		15.3	20.65
- 24:43		15.45	30.85
-272		15.5	31.2
-308		15.9	32.85

Table 12. The AGI double layer capacity α in microfarado/ca² and the AGI resistivty ρ , expressed as ρ/α in observed latted for electrode \$11 at a given potential ψ in millivolts in .01625 KaO₂

strengths employed at a high negative potential but then overlap. Our \varkappa values agree very well with those of Agar around the zero point of charge.

The increasing difference between our and Agar's or Lyklema's χ values at high negative potentials indicate that Equation 83 is not valid, i.e. $d\psi$ and $d\psi_0$ are not approximately equal, in this region and hence the differentiation of the $\sigma - \psi$ plot would not yield the double layer capacity χ . Thus Agar's or Lyklema's values would be incorrect in this potential range and so would differ from our results which do not depend on the validity of Equation 83. The indicated invalidity of Equation 53 at high negative potentials means that the variation in potential $V_{\alpha}(o)$ Figure 9. Dependence of differential double leyer caproity on potential (relative to potential . at zero point of charge) and supporting electrolyte concentration for the Agl-KNO3 solution interface

Dependence of differential deuble layer capacity on petential (relative to petential at zero point of charge) at supporting electrolyte concentration for the AgL-XRO3 solution interface Figure 10.

Dependence of differential double layer conserts on potential (relative to potential at zero point of charge) at zero point of the superting electrolyte concentration of .01% for the AgL-RWO₃ solution interface Figure 11.

85 .

and or potential χ is significant in this potential region. It should be noted that both Lyklema's and Ager's experimental results become increasingly more inaccurate at high negative potentials. In fact there is overlap of the $\chi - \psi$ curves at the various electrolyte concentrations in this potential region. This inaccuracy also contributes to the difference between their observed values χ values and ours at high negative potentials.

The good egreement between Agar's χ values and ours around the zero point of charge (small potentials) indicates that Equation 03 is valid in this potential region. In the discussion of expectance 0' of solid Ag2 it will be indicated that the variation of potential $V_{\rm c}(o)$ around the zero point of charge is significant. Hence in order for $d\psi \approx d\psi_{\rm c}$ around the equation of potential χ much be expression of charge the charges of potential χ much be expressingly equal but opposite to the above change of $V_{\rm c}(o)$ around the zero point of charge.

The Resistivity of Silver Todice

The resistivity p of AgI can be estimated from the experimental parameters. In the experimental potential range we have

$$K_{p} = \begin{bmatrix} \frac{2\lambda_{p}}{r_{0}} & \frac{2\pi}{\rho} & \chi \end{bmatrix}^{\frac{1}{2}/2}$$

(70)

Using Equation 22 we get

 $\rho = \frac{2A_{0}^{2}}{r_{0}^{2}\lambda_{f}} \frac{c_{0}}{|x_{p}^{2}|^{2}}$

SS.

Let

$$\alpha^{i} = \frac{\frac{\partial A_{0}^{4}}{2}}{r_{0}^{2}A_{f}} \quad \text{in cm}$$

89

Since

$$X_{\rm b} = X - X_{\rm p} \tag{71}$$

(85)

then

$$p/\alpha^{2} = \frac{c_{0}}{(x - x_{F})^{2}}$$
 (26)

We have expressed p as p/α^2 in ohms since the constant α^2 can at best be estimated. Since the value of Kp at a given potential can be calculated by use of Equation 28 then the value of p/α^2 at a given potential ψ and ionic strength of KNO₃ for the various electrodes are listed in Tables 10 -12. Plots of p/α^2 vs ψ at a given ionic strength of KNO₃ for the various electrodes are shown in Figures 13 - 15. Plots neglecting Kp ware also made. Over the large part of the potential range studied Kp is small compared to K oven if the Paradale current is limited only by diffusion; if there is in addition any barrier to transfer of ions across the interface it is very likely that Kp would be negligible over the cative potential range studied. Such a barrier would behave formally as a resistor in series with the Faradale capacitance. It may be sufficientby large that a negligible current passes through the Faradale impedance, and hence the latter is insignificant.

The observed repid rise in ρ/α^2 at very high negative potentials just where the Paradaic impedance due to 1^- ion diffusion becomes Figure 13. Dependents of resistivity of Agl on potential (relative to potential at zero point of charge)

91 ·

Migure 14. Dependence of restativity of Agi en patential (ralative to petert 1 at ze point of charge)

.-~ .

significant may be misleading. By neglecting $K_{\rm P}$ it is seen that only a slight rise in ρ/α' in this potential region occurs. This is more reasonable and hence suggests that a significant barrier to I⁻ transfer does occur. Experiments were not extended to sufficiently high positive potentials to permit conclusions regarding a possible barrier to Ag⁺ transfer.

At first it may be thought that the observed increase in ρ/α' with decrease in ionic strength of solution is due to an increasing contribution by the electrolyte resistivity to the impedance of the pore. We had assumed it to be negligible compared to the AgI resistivity. An impedance formula was therefore derived permitting explicit inclusion of the solution resistivity. However, this formula predicted that ρ would vary with ionic strength in the range of ionic strengths studied in the opposite direction from that observed when the solution resistivity was significant. Perhaps the dependence of ρ/α' on ionic strength may be explained by the change in surface conditions with ionic strength. At any rate values of ρ/α' at the various ionic strengths tend to converge at positive potentials.

We can estimate the value of α^i for an electrode as follows. We have

$$\alpha' = \frac{\frac{SA_p^2}{r_0^2 A_f}}{r_0^2 A_f}$$

(85)

Based on Equation 41b we estimate the radius of a pore to be

$$r_o \approx 10^{-5}$$
 cm

We estimate the thickness au of the AgI wall in the pore to be

$$\tau \approx 10^{-6} \text{ cm}$$

Hence

$$\alpha^{*} \approx 8 \times 10^{4} \frac{A_{\rm p}^{2}}{A_{\rm D}}$$

Using Table 9 we get for each electrode

$$\alpha' #9 \approx 1.2 \times 10^4 \text{ cm}$$

 $\alpha' #10 \approx .60 \times 10^4 \text{ cm}$
 $\alpha' #11 \approx .20 \times 10^4 \text{ cm}$

We can estimate the value of ρ for an electrode as follows. Consider the value of ρ/α' for electrode #9 at $\psi = -11$ in .01N KNO₃ from Table 10. Using the above estimated value of α' for electrode #9 we get

$$\rho \#9 = 4.1 \times 10^5$$
 ohm-cm at $\psi = -11$ in .01N KNO₂

Similarly

$$\rho \# 10 = 3.0 \times 10^5$$
 ohm-cm at ψ = -11 for .01N KNO₃

 $\rho \# 11 = 5.6 \times 10^4$ ohm-cm at $\psi = -9$ for .01N KNO₃ Note that we have assumed τ / r_o^2 has the same magnitude for each electrode. This assumption can at best be an approximation. The conductivity of AgI pellets at compressed pressures was studied recently by J. N. Mrgudich (15). He determined conductivity values of the order 10^{-4} to 10^{-5} ohm⁻¹cm⁻¹. The conductivity will partly depend on the impurity content of the specimen. Hence, the above magnitude and variation of resistivity among the various electrodes are reasonable. The resistance R' of a AgI electrode can be estimated as follows. The solution resistance R_{sol} is expressed by

$$R_{sol} = K_{sol} \rho_{sol}$$
(87)

where ρ_{sol} is the resistivity of the solution and K_{sol} is the geometric proportionality constant in cm⁻¹. Throughout the experimental potential range the concentrations of Ag⁺ and I⁻ are much less than that of the electrolyte KNO₃. Hence the solution resistivity is simply the electrolyte resistivity. The values of the resistivity of aqueous KNO₃ at 25°C at a given ionic strength are listed in Table 13. They were obtained from

Table 13. The values of the equivalent conductance in cm^2/ohm equivalent and resistivity ρ_{sol} in ohm-cm for KNO₃ at 25°C in water at various concentrations N in equivalents/liter

N	Λ	Psol
.00102	141.8	6916
.01020	132.8	738.6
. 10200	120.4	81.4

the American Institute of Physics Handbook (16). Using Equation 87 in Equation 81 we get

$$R_o = R' + K_{sol} \rho_{sol} \tag{88}$$

Since we observe that AgI resistivity ρ increases with decreasing ionic strength in the potential range studied then R' should vary similarly.

However, we can consider R' to be constant as an approximation for the ionic strengths studied. Hence a plot of the R_0 vs ρ_{sol} is approximately linear with an intercept approximately R'. A two point plot of R_0 vs ρ_{sol} for electrodes #9 and #10 using data at .1N and .01N solution was made. We determine

R' \approx 26 ohms for electrode #9 R' \approx 29 ohms for electrode #10

The effective thickness of AgI on the electrode can be estimated once R' is estimated. We have

$$R' = \frac{\rho \tau_{eff}}{A_e}$$
(77)

Using the above estimated values of ρ and R' and Table 1 we get

 $\tau_{\rm eff} \approx 2.4 \times 10^{-6}$ cm for electrode #9 $\tau_{\rm eff} \approx 3.5 \times 10^{-6}$ cm for electrode #10

Comparing these values with the thickness au of AgI we find

$$\frac{\tau_{eff}}{\tau_{e}} \approx .70 \times 10^{-2} \text{ for electrode } \#9$$

$$\frac{\tau_{\rm eff}}{\tau_{\rm e}} \approx .80 \times 10^{-2}$$
 for electrode #10

These small ratios indicate that very deep pores occur and explain why the resistance R' in AgI is small compared to the electrolyte resistance for the electrolyte concentrations studied. The Capacitance C' of Solid Silver Iodide

Plots of the equivalent capacitance C' of AgI vs potential ψ for the various electrodes are shown in Figures 16 - 18.

The observed rise in capacitance C' at positive potentials and very high negative potentials suggests that capacitance C' is approximately a diffuse capacitance with mobile impurities as given by Equation 75'. Note that C' should be plotted vs $V_{\rm C}(0)$, the potential just inside the crystal surface relative to the crystal bulk, rather than potential ψ . The potential at which the minimum of capacitance C' occurs is about ψ = -240 millivolts for electrodes #9 and #10 at the various electrolyte concentrations. The potential at which the minimum of capacitance C' occurs for electrode #11 cannot be detected with accuracy but is in the range between $\psi = -240$ millivolts and $\psi = -280$ millivolts. A comparison of the C' and C_D values for a given electrode shows that the former is large compared to the latter.

Since capacitance C' changes rapidly around the zero point of charge so also must the potential $V_c(o)$. This is also the case at very high negative potentials ($|\psi| \ge 300 \text{ mv}$). The observed slight variation of capacitance C' between $\psi = -100 \text{ mv}$ and $\psi = -300 \text{ mv}$ indicates that potential $V_c(o)$ does likewise in this region.

For studies of the impedance of solid Ag cl and solid Ag Br see references 17 and 18 respectively.

Figure 16. Dependence of equivalent series capacitance of solid AgI on potential (relative to potential at zero point of charge)

Figure 17. Dependence of equivalent series capacitance of solid AgI on potential (relative to potential at zero point of charge)

Figure 18. Dependence of equivalent series capacitance of solid AgI on potential (relative to potential at zero point of charge)

SUMMARY

An impedance bridge was used to determine the equivalent series capacitance Cy and resistance Ry for the AgI-aqueous solution system. An AgI electrode in contact with an aqueous potassium nitrate solution containing a very dilute concentration of Ag^+ and I⁻ ions served as the system. A cell potential range of about 420 millivolts was used at KNO_3 concentrations of .1N, .01N, and .001N. The Cy and Ry values at a given potential and electrolyte concentration were determined in a frequency range from 256 cycles per second to 9,168 cycles per second. Several electrodes of varying AgI thickness were studied to check the consistency of the results. An electrical analog circuit was proposed for the interface which was consistent with known properties of this interface and which adequately represented the dependence of Cy and Ry on frequency and potential over the ranges of frequency and potential studied.

It has been shown that the frequency dependences of both C_V and R_V are due to distributed capacitances in the pores of AgI. This effect can be described by tapered RC transmission lines connected in parallel. The equivalent capacitance and resistance of one line represents the impedance in one pore. The equivalent capacitance C_P and resistance R_P of the parallel transmission lines is in parallel with the differential capacitance C_D of the double layer associated with the flat portion of the AgI. The resulting impedance is in series with both the series equivalent capacitance C' and resistance R' of solid AgI and the solution resistance. Capacitance C' arises from space charges of defects in the AgI.

By setting the value of the AgI double layer capacity equal to that for the mercury-sodium fluoride solution interface at the zero point of charge at .001N solution the area of the flat portion of the AgI electrode is determined, and hence the AgI double layer capacity at any potential and electrolyte concentration. This was the goal of our research. We find that the double capacity values agree very well with those of Agar around the zero point of charge at various electrolyte concentrations. Whereas his values decrease slightly at high negative potentials we observe increased values in this potential range.

SUGGESTIONS FOR FUTURE WORK

An investigation may be undertaken to use various electrolytes so that differences in the AgI double layer capacity can be determined. Such differences would occur in the Stern layer for ions of the same valence. Such work has been done by J. Lyklema (9) by the titration method. He observed that the double layer capacity varied somewhat in the negative potential region for various cations.

An investigation with the use of an organic solvent may be undertaken. The Stern capacity should change from that with water as the solvent due to differences in dielectric constant. The dielectric constant in the Stern layer has been estimated to range between 4 and 10 with water as the solvent and hence a drop by at least a factor of 8 from bulk conditions.

The effect of different methods of preparing the AgI electrode may also be studied.

A study using an electrolyte concentration of 1N should be tried. A significant difference between those values and those at .1N would indicate that specific adsorption occurs. The very small electrolyte resistance in this case would also permit a more accurate measurement of the AgI resistance.

BIBLIOGRAPHY

l.	Stern, O. Z. Electrochem. 30: 508. 1924.
2.	Grahame, D. C. Chem. Revs. 41: 441. 1947.
3.	Frumkin, A. and Proskurnin, M. Trans. Far. Soc. 31: 110. 1935.
4.	Grahame, D. C. J. Am. Chem. Soc. 71: 2975. 1949.
5.	Laar, J. A. W. Van. Unpublished Ph.D. Thesis. Utrecht, The Netherlands, Library, State University of Utrecht. 1952.
6.	Mackor, E. L. Rec. Trav. Chim. 70: 663. 1951.
7.	Rec. Trav. Chim. 70: 763. 1951.
8.	Lyklema, J. and Overbeek, J. Th. G. J. Colloid Science 16: 595. 1961.
9.	Trans. Far. Soc. 59: 418. 1963.
10.	Agar, G. The adsorption of amine on silver iodide. Unpublished Ph.D. Thesis. Cambridge, Massachusetts, Library, Massachusetts Institute of Technology. 1961.
11.	Kelsh, D. The deformation of the electrocapillary curve due to adsorption of organic molecules. Unpublished Ph. <u>D</u> . Thesis. Ames, Iowa, Library, Iowa State University of Science and Technology. 1962.
12.	De Levie, R. Electrochim. Acta 8: 751. 1963.
13.	Electrochim. Acta 9: 1931. 1964.
14.	Iwasaki, I. and DeBruyn, P. L. J. Phys. Chem. 62: 594. 1958.
15.	Mrgudich, J. N. J. Electrochem. Soc. 107: 475. 1960.
16.	Gray, D. E. American Institute of Physics Handbook. 2nd ed. McGraw-Hill Book Co., Inc., New York, N.Y. 1963.
17.	Steidel, C. A. The impedance at the AgCl-aqueous solution interface Unpublished Ph.D. Thesis. Ithaca, New York, Library, Cornell University. 1966.
18.	Rayleigh, D. O. J. of Phys. Chem. 70: 689. 1966.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the reliable support and understanding of Professor R. S. Hansen during the course of this research. He suggested the problem and was very helpful in working out clear theoretical treatments.

Special thanks also goes to Robert Frost, who wrote the program to determine the various experimental parameters on the I.B.M. 360/50 computer. His willingness to encounter and solve the program problems that arose is much appreciated.

The experimental groundwork performed by Daniel Grantham with the impedance bridge was of great benefit to the author.